Euclid: Identification of asteroid streaks in simulated images using StreakDet software
Journal
Date Issued
2020
Author(s)
Pöntinen, M.
•
Granvik, M.
•
Nucita, A. A.
•
Conversi, L.
•
Altieri, B.
•
•
Bodendorf, C.
•
•
•
•
Carretero, J.
•
Carry, B.
•
•
Cledassou, R.
•
Congedo, G.
•
•
Cropper, M.
•
Dusini, S.
•
•
•
•
•
Grupp, F.
•
Hormuth, F.
•
Israel, H.
•
Jahnke, K.
•
Kermiche, S.
•
Kitching, T.
•
Kohley, R.
•
Kubik, B.
•
Kunz, M.
•
Laureijs, R.
•
Lilje, P. B.
•
Lloro, I.
•
•
Marggraf, O.
•
Massey, R.
•
•
Meylan, G.
•
Moscardini, L.
•
Padilla, C.
•
Paltani, S.
•
•
Pires, S.
•
Polenta, G.
•
Raison, F.
•
Roncarelli, M.
•
Rossetti, E.
•
Saglia, R.
•
Schneider, P.
•
Secroun, A.
•
Serrano, S.
•
Sirri, G.
•
Taylor, A. N.
•
Tereno, I.
•
Toledo-Moreo, R.
•
•
Wang, Y.
•
Wetzstein, M.
•
Zoubian, J.
Description
We thank the anonymous referee for constructive comments.
M.P. and M.G. acknowledge funding from the Academy of Finland
(projects #316292 and #299543). The Euclid Consortium acknowledges the
European Space Agency and the support of a number of agencies and institutes
that have supported the development of Euclid. A detailed complete list is available
on the Euclid web site (http://www.euclid-ec.org). In particular, the
Academy of Finland, the Agenzia Spaziale Italiana, the Belgian Science Policy,
the Canadian Euclid Consortium, the Centre National d’Etudes Spatiales,
the Deutsches Zentrum für Luft- und Raumfahrt, the Danish Space Research
Institute, the Fundação para a Ciência e a Tecnologia, the Ministerio de Economia
y Competitividad, the National Aeronautics and Space Administration, the
Netherlandse Onderzoekschool Voor Astronomie, the Norwegian Space Agency,
the Romanian Space Agency, the State Secretariat for Education, Research and
Innovation (SERI) at the Swiss Space Office (SSO), and the United Kingdom
Space Agency.
Abstract
Context. The ESA Euclid space telescope could observe up to 150 000 asteroids as a side product of its primary cosmological mission. Asteroids appear as trailed sources, that is streaks, in the images. Owing to the survey area of 15 000 square degrees and the number of sources, automated methods have to be used to find them. Euclid is equipped with a visible camera, VIS (VISual imager), and a near-infrared camera, NISP (Near-Infrared Spectrometer and Photometer), with three filters.
Aims. We aim to develop a pipeline to detect fast-moving objects in Euclid images, with both high completeness and high purity.
Methods. We tested the StreakDet software to find asteroids from simulated Euclid images. We optimized the parameters of StreakDet to maximize completeness, and developed a post-processing algorithm to improve the purity of the sample of detected sources by removing false-positive detections.
Results. StreakDet finds 96.9% of the synthetic asteroid streaks with apparent magnitudes brighter than 23rd magnitude and streak lengths
longer than 15 pixels (10 arcsec h-1), but this comes at the cost of finding a high number of false positives. The number of false positives can be
radically reduced with multi-streak analysis, which utilizes all four dithers obtained by Euclid.
Conclusions. StreakDet is a good tool for identifying asteroids in Euclid images, but there is still room for improvement, in particular, for finding
short (less than 13 pixels, corresponding to 8 arcsec h-1) and/or faint streaks (fainter than the apparent magnitude of 23).
Volume
644
Start page
A35
Issn Identifier
0004-6361
Ads BibCode
2020A&A...644A..35P
Rights
open.access
File(s)![Thumbnail Image]()
Loading...
Name
aa37765-20-compr.pdf
Description
Pdf editoriale
Size
484.54 KB
Format
Adobe PDF
Checksum (MD5)
1e443a12d536985108396ab959052fa6
