Repository logo
  • English
  • Italiano
Log In
Have you forgotten your password?
  1. Home
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
  5. Radio observations of the merging galaxy cluster Abell 520
 

Radio observations of the merging galaxy cluster Abell 520

Journal
ASTRONOMY & ASTROPHYSICS  
Date Issued
2019
Author(s)
Hoang, D. N.
•
Shimwell, T. W.
•
van Weeren, R. J.
•
BRUNETTI, Gianfranco  
•
Röttgering, H. J. A.
•
Andrade-Santos, F.
•
BOTTEON, Andrea  
•
Brüggen, M.
•
CASSANO, Rossella  
•
Drabent, A.
•
De Gasperin, F.  
•
Hoeft, M.
•
Intema, H. T.
•
Rafferty, D. A.
•
Shweta, A.
•
Stroe, A.
DOI
10.1051/0004-6361/201833900
Abstract
Context. Extended synchrotron radio sources are often observed in merging galaxy clusters. Studies of the extended emission help us to understand the mechanisms in which the radio emitting particles gain their relativistic energies.
Aims: We examine the possible acceleration mechanisms of the relativistic particles that are responsible for the extended radio emission in the merging galaxy cluster Abell 520.
Methods: We performed new 145 MHz observations with the LOw Frequency ARay (LOFAR) and combined these with archival Giant Metrewave Radio Telescope (GMRT) 323 MHz and Very Large Array (VLA) 1.5 GHz data to study the morphological and spectral properties of extended cluster emission. The observational properties are discussed in the framework of particle acceleration models associated with cluster merger turbulence and shocks.
Results: In Abell 520, we confirm the presence of extended (760 × 950 kpc2) synchrotron radio emission that has been classified as a radio halo. The comparison between the radio and X-ray brightness suggests that the halo might originate in a cocoon rather than from the central X-ray bright regions of the cluster. The halo spectrum is roughly uniform on the scale of 66 kpc. There is a hint of spectral steepening from the SW edge towards the cluster centre. Assuming diffusive shock acceleration (DSA), the radio data are suggestive of a shock Mach number of ℳSW = 2.6-0.2+0.3 that is consistent with the X-ray derived estimates. This is in agreement with the scenario in which relativistic electrons in the SW radio edge gain their energies at the shock front via acceleration of either thermal or fossil electrons. We do not detect extended radio emission ahead of the SW shock that is predicted if the emission is the result of adiabatic compression. An X-ray surface brightness discontinuity is detected towards the NE region that may be a counter shock of Mach number ℳNEX = 1.52±0.05. This is lower than the value predicted from the radio emission which, assuming DSA, is consistent with ℳNE = 2.1 ± 0.2.
Conclusions: Our observations indicate that the radio emission in the SW of Abell 520 is likely effected by the prominent X-ray detected shock in which radio emitting particles are (re-)accelerated through the Fermi-I mechanism. The NE X-ray discontinuity that is approximately collocated with an edge in the radio emission hints at the presence of a counter shock.
Volume
622
Start page
A20
Uri
http://hdl.handle.net/20.500.12386/30395
Url
https://www.aanda.org/articles/aa/full_html/2019/02/aa33900-18/aa33900-18.html
Issn Identifier
0004-6361
Ads BibCode
2019A&A...622A..20H
Rights
open.access
File(s)
Loading...
Thumbnail Image
Name

aa33900-18.pdf

Description
Pdf editoriale
Size

4.17 MB

Format

Adobe PDF

Checksum (MD5)

04159d0ea08f7ed22a0c030ddec5963d

Explore By
  • Communities and Collection
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Information and guides for authors
  • https://openaccess-info.inaf.it: all about open access in INAF
  • How to enter a product: guides to OA@INAF
  • The INAF Policy on Open Access
  • Downloadable documents and templates

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback