How to constrain mass and spin of supermassive black holes through their disk emission
Journal
Date Issued
2018
Author(s)
Abstract
We investigate the global properties of the radiation emitted by the accretion disk around Kerr black holes. Using the Kerr blackbody numerical model, we build an analytic approximation of the disk emission features focusing on the pattern of the produced radiation as a function of the black hole spin, mass, accretion rate and viewing angle. The assumption of having a geometrically thin disk limits our analysis to systems emitting below 0.3 of the Eddington luminosity. We apply this analytical model to four blazars (whose jets are pointing at us) at high redshift that show clear signatures of disk emission. For them, we derive the black hole masses as a function of spin. If these jetted sources are powered by the black hole rotation, they must have high spin values, further constraining their masses.
Volume
612
Start page
A59
Issn Identifier
0004-6361
Ads BibCode
2018A&A...612A..59C
Rights
open.access
File(s)![Thumbnail Image]()
Loading...
Name
aa31897-17.pdf
Description
PDF editoriale
Size
5.81 MB
Format
Adobe PDF
Checksum (MD5)
1423c738c3ef21db70d51f8443d1a309
