Repository logo
  • English
  • Italiano
Log In
Have you forgotten your password?
  1. Home
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
  5. A polarimetric investigation of Jupiter: Disk-resolved imaging polarimetry and spectropolarimetry
 

A polarimetric investigation of Jupiter: Disk-resolved imaging polarimetry and spectropolarimetry

Journal
ASTRONOMY & ASTROPHYSICS  
Date Issued
2017
Author(s)
McLean, W.
•
Stam, D. M.
•
Bagnulo, S.
•
Borisov, G.
•
Devogèle, M.
•
CELLINO, Alberto  
•
Rivet, J. P.
•
Bendjoya, P.
•
Vernet, D.
•
Paolini, G.
•
Pollacco, D.
DOI
10.1051/0004-6361/201629314
Abstract
Context. Polarimetry is a powerful remote sensing tool to characterise solar system planets and, potentially, to detect and characterise exoplanets. The linear polarisation of a planet as a function of wavelength and phase angle is sensitive to the cloud and haze particle properties in planetary atmospheres, as well as to their altitudes and optical thicknesses.
Aims: We present for the first time polarimetric signals of Jupiter mapped over the entire disk, showing features such as contrasts between the belts and zones, the polar regions, and the Great Red Spot. We investigate the use of these maps for atmospheric characterisation and discuss the potential application of polarimetry to the study of the atmospheres of exoplanets.
Methods: We have obtained polarimetric images of Jupiter, in the B, V, and R filters, over a phase angle range of α = 4°-10.5°. In addition, we have obtained two spectropolarimetric datasets, over the wavelength range 500-850 nm. An atmospheric model was sought for all of the datasets, which was consistent with the observed behaviour over the wavelength and phase angle range.
Results: The polarimetric maps show clear latitudinal structure, with increasing polarisation towards the polar regions, in all filters. The spectropolarimetric datasets show a decrease in polarisation as a function of wavelength along with changes in the polarisation in methane absorption bands. A model fit was achieved by varying the cloud height and haze optical thickness; this can roughly produce the variation across latitude for the V and R filters, but not for the B filter data. The same model particles are also able to produce a close fit to the spectropolarimetric data. The atmosphere of Jupiter is known to be complex in structure, and data taken at intermediate phase angles (unreachable for Earth-based telescopes) seems essential for a complete characterisation of the atmospheric constituents. Because exoplanets orbit other stars, they are observable at intermediate phase angles and thus promise to be better targets for Earth-based polarimetry.

Based on data obtained with ToPol at the one-metre "Omicron" (West) telescope of the C2PU (Centre Pédagogique Planète et Univers) facility (Calern plateau, Observatoire de la Côte d'Azur, France), and FoReRo2, at the two-metre RCC telescope of the Rozhen National Astronomical Observatory, Bulgaria.

Volume
601
Start page
A142
Uri
http://hdl.handle.net/20.500.12386/26889
Url
https://www.aanda.org/articles/aa/abs/2017/05/aa29314-16/aa29314-16.html
Issn Identifier
0004-6361
Ads BibCode
2017A&A...601A.142M
Rights
open.access
File(s)
Loading...
Thumbnail Image
Name

McLeanetal2017.pdf

Description
pdf editoriale
Size

1.89 MB

Format

Adobe PDF

Checksum (MD5)

7b74ef08cf5991f5f62c1f71e985f47b

Explore By
  • Communities and Collection
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Information and guides for authors
  • https://openaccess-info.inaf.it: all about open access in INAF
  • How to enter a product: guides to OA@INAF
  • The INAF Policy on Open Access
  • Downloadable documents and templates

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback