Calibration of NOMAD on ESA's ExoMars Trace Gas Orbiter: Part 2 - The Limb, Nadir and Occultation (LNO) channel
The LNO channel has a lower resolving power (∼10,000) than the SO channel, but is still typically an order of magnitude better than previous instruments orbiting Mars. The channel primarily operates in nadir-viewing mode, pointing directly down to the surface to measure the narrow atmospheric molecular absorption lines, clouds and surface features in the reflected sunlight. From the depth and position of the observed atmospheric absorption lines, the constituents of the Martian atmosphere and their column densities can be derived, leading to new insights into the processes that govern their distribution and transport. Surface properties can also be derived from nadir observations by observing the shape of the spectral continuum.
Many calibration measurements were made prior to launch, on the voyage to Mars, and continue to be made in-flight during the science phase of the mission. This work, part 2, addresses the aspects of the LNO channel calibration that are not covered elsewhere, namely: the LNO ground calibration setup, the LNO occultation and nadir boresight pointing vectors, LNO detector characterisation and nadir/limb illumination pattern, instrument temperature effects, and finally the radiometric calibration of the LNO channel. An accompanying paper, part 1 (Thomas et al., 2021, this issue), addresses similar aspects for SO, the other infrared channel in NOMAD. A further accompanying paper (Cruz-Mermy et al., 2021, this issue) investigated the LNO radiometric calibration in more detail, approaching the work from a theoretical perspective. The two calibrations agree with each other to within 3%, validating each calibration method.
IThomas Calibration part2.pdf
5.73 MB
Adobe PDF
30418b960b22548611cd3aaca28036c7
