Skip navigation
  • INAF logo
  • Home
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects
  • Explore by
    • Research outputs
    • Researchers
    • Organization units
    • Projects
  • Login:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
  • Italian
  • English

  1. OA@INAF
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12386/23401
Title: Physical properties of z > 4 submillimeter galaxies in the COSMOS field
Authors: Smolčić, V.
Karim, A.
Miettinen, O.
Novak, M.
Magnelli, B.
Riechers, D. A.
Schinnerer, E.
Capak, P.
BONDI, MARCO 
Ciliegi, P. 
Aravena, M.
Bertoldi, F.
Bourke, S.
Banfield, J.
Carilli, C. L.
Civano, F.
Ilbert, O.
Intema, H. T.
Le Fèvre, O.
Finoguenov, A.
Hallinan, G.
Klöckner, H. -R.
Koekemoer, A.
Laigle, C.
Masters, D.
McCracken, H. J.
Mooley, K.
Murphy, E.
Navarette, F.
Salvato, M.
Sargent, M.
Sheth, K.
Toft, S.
Zamorani, G.
Issue Date: 2015
Journal: ASTRONOMY & ASTROPHYSICS 
Number: 576
First Page: A127
Abstract: We investigate the physical properties of a sample of six submillimeter galaxies (SMGs) in the COSMOS field, spectroscopically confirmed to lie at redshifts z> 4. While the redshifts for four of these SMGs were previously known, we present here two newly discovered z<SUB>spec</SUB>> 4 SMGs. For our analysis we employ the rich (X-ray to radio) COSMOS multi-wavelength datasets. In particular, we use new data from the Giant Meterwave Radio Telescope (GMRT) 325 MHz and 3 GHz Jansky Very Large Array (VLA) to probe the rest-frame 1.4 GHz emission at z = 4, and to estimate the sizes of the star formation regions of these sources, respectively. We find that only oneSMG is clearly resolved at a resolution of 0''̣6 × 0''̣7 at 3 GHz, two may be marginally resolved, while the remaining three SMGs are unresolved at this resolution. Combining this with sizes from high-resolution (sub-)mm observations available in the literature for AzTEC 1 and AzTEC 3 we infer a median radio-emitting size for our z> 4 SMGs of (0''̣63 ± 0''̣12) × (0''̣35 ± 0''̣05) or 4.1 × 2.3 kpc<SUP>2</SUP> (major × minor axis; assuming z = 4.5) or lower if we take the two marginally resolved SMGs as unresolved. This is consistent with the sizes of star formation regions in lower-redshift SMGs, and local normal galaxies, yet higher than the sizes of star formation regions of local ultraluminous infrared galaxies (ULIRGs). Our SMG sample consists of a fair mix of compact and more clumpy systems with multiple, perhaps merging, components. With an average formation time of ~280 Myr, as derived through modeling of the UV IR spectral energy distributions, the studied SMGs are young systems. The average stellar mass, dust temperature, and IR luminosity we derive are M<SUB>⋆</SUB> ~ 1.4 × 10<SUP>11</SUP> M<SUB>☉</SUB>, T<SUB>dust</SUB> ~ 43 K, and L<SUB>IR</SUB> ~ 1.3 × 10<SUP>13</SUP>L<SUB>☉</SUB>, respectively. The average L<SUB>IR</SUB> is up to an order of magnitude higher than for SMGs at lower redshifts. Our SMGs follow the correlation between dust temperature and IR luminosity as derived for Herschel-selected 0.1 <z< 2 galaxies. We study the IR-radio correlation for our sources and find a deviation from that derived for z< 3 ULIRGs (⟨ q<SUB>IR</SUB> ⟩ = 1.95 ± 0.26 for our sample, compared to q ≈ 2.6 for IR luminous galaxies at z< 2). In summary, we find that the physical properties derived for our z> 4 SMGs put them at the high end of the L<SUB>IR</SUB>-T<SUB>dust</SUB> distribution of SMGs, and that our SMGs form a morphologically heterogeneous sample. Thus, additional in-depth analyses of large, statistical samples of high-redshift SMGs are needed to fully understand their role in galaxy formation and evolution.
Acknowledgments: We thank the referee for insightful comments on the manuscript. This research was funded by the European Union’s Seventh Frame-work program under grant agreement 337595 (ERC Starting Grant, “CoSMass”). A.K. acknowledges support by the Collaborative Research Council 956, sub-project A1, funded by the Deutsche Forschungsgemeinschaft (DFG). The Dark Cosmology Centre is funded by the Danish National Research Foundation. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.
URI: http://hdl.handle.net/20.500.12386/23401
URL: https://www.aanda.org/articles/aa/abs/2015/04/aa24996-14/aa24996-14.html
ISSN: 0004-6361
DOI: 10.1051/0004-6361/201424996
Bibcode ADS: 2015A&A...576A.127S
Fulltext: open
Appears in Collections:1.01 Articoli in rivista

Files in This Item:
File Description SizeFormat 
aa24996-14.pdf2.14 MBAdobe PDFView/Open
Show full item record

Page view(s)

15
checked on Jan 20, 2021

Download(s)

3
checked on Jan 20, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are published in Open Access, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects

Informazioni e guide per autori

https://openaccess-info.inaf.it: tutte le informazioni sull'accesso aperto in INAF

Come si inserisce un prodotto: le guide a OA@INAF

La Policy INAF sull'accesso aperto

Documenti e modelli scaricabili

Feedback
Built with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE