Skip navigation
  • INAF logo
  • Home
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects
  • Explore by
    • Research outputs
    • Researchers
    • Organization units
    • Projects
  • Login:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
  • Italian
  • English

  1. OA@INAF
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12386/23732
Title: Characterization of the Inner Knot of the Crab: The Site of the Gamma-Ray Flares?
Authors: Rudy, Alexander
Horns, Dieter
DeLuca, Andrea
Kolodziejczak, Jeffery
Tennant, Allyn
Yuan, Yajie
Buehler, Rolf
Arons, Jonathon
Blandford, Roger
CARAVEO, PATRIZIA 
COSTA, ENRICO
Funk, Stephan
Hays, Elizabeth
Lobanov, Andrei
Max, Claire
Mayer, Michael
MIGNANI, Roberto 
O'Dell, Stephen L.
Romani, Roger
TAVANI, MARCO 
Weisskopf, Martin C.
Issue Date: 2015
Journal: THE ASTROPHYSICAL JOURNAL 
Number: 811
Issue: 1
First Page: 24
Abstract: A particularly intriguing recent result from γ-ray astronomy missions is the detection of powerful flares from the Crab Nebula, which challenges the current understanding of pulsar wind nebulae and acceleration mechanisms. To search for the production site(s) of these flares, we conducted a multi-wavelength observing campaign using Keck, the Hubble Space Telescope (HST), and the Chandra X-ray Observatory. As the short timescales of the γ-ray flares (≲ 1 day) suggest a small emitting region, the Crab’s inner knot (about 0.6 arcsec from the pulsar) is a candidate site for such flaring. This paper describes observations of the inner knot, seeking to understand its nature and possible relationship with γ-ray flares. Using singular-value decomposition, analysis of the HST images yielded results consistent with traditional methods while substantially reducing some uncertainties. These analyses show that the knot’s intrinsic properties (especially size and brightness) are correlated with its (projected) separation from the pulsar. This characterization of the inner knot helps in constraining standard shock model parameters, under the assumption that the knot lies near the shocked surface. While the standard shock model gives good agreement in several respects, two puzzles persist: (a) the observed angular size of the knot relative to the pulsar-knot separation is much smaller than expected; and (b) the variable high degree of polarization (reported by others) is difficult to reconcile with a highly relativistic downstream flow. However, the IR-optical flux of the inner knot is marginally consistent with the shock accelerating most of the Nebula’s optical-emitting particles.
Acknowledgments: The Fermi /LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat à l’Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucléaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), High Energy Accelerator Research Organization (KEK), and the Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council, and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica and the Centre d’Etudes Spatiales in France. The research leading to these results has also received funding from the European Commission Seventh Framework Programme (FP7/2007-2013) under grant agreement n. 267251. Several of the authors would also like to acknowledge both funding and solid support from the Chandra X-ray Center and the Hubble Space Telescope Science Institute under a number of observing proposals: GO3-14054Z, GO3-14057Z, GO4-15058Z, GO4-15059Z, GO-13109, GO-13196, and GO-13348.
URI: http://hdl.handle.net/20.500.12386/23732
URL: https://iopscience.iop.org/article/10.1088/0004-637X/811/1/24
ISSN: 0004-637X
DOI: 10.1088/0004-637X/811/1/24
Bibcode ADS: 2015ApJ...811...24R
Fulltext: open
Appears in Collections:1.01 Articoli in rivista

Files in This Item:
File Description SizeFormat 
Rudy_2015_ApJ_811_24.pdfPDF editoriale4.51 MBAdobe PDFView/Open
Show full item record

Page view(s)

19
checked on Jan 17, 2021

Download(s)

5
checked on Jan 17, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are published in Open Access, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects

Informazioni e guide per autori

https://openaccess-info.inaf.it: tutte le informazioni sull'accesso aperto in INAF

Come si inserisce un prodotto: le guide a OA@INAF

La Policy INAF sull'accesso aperto

Documenti e modelli scaricabili

Feedback
Built with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE