Asymmetries in the dust flux at Mercury
Journal
Date Issued
2016
Author(s)
Abstract
The planet Mercury has an extended and tenuous exosphere made up of atoms that are ejected from the surface by energetic processes, including hypervelocity micrometeoritic impacts, photon-stimulated desorption by UV radiation, and ion sputtering. Meteoroid impacts of particles smaller than 1 cm, which are important for replenishing the exosphere daily, are not well-studied. We present a systematic investigation of spatial asymmetries in the impactor rate of micrometeoroids over Mercury's surface as a function of planetary true anomaly (TAA). Since the orbit of Mercury is quite eccentric a seasonal variation of the impact rate is to be expected. We find that the source peaks near the planetary equator for most TAA. Contrary to previous assumptions, we find the source to be non-uniform in local time. Only certain regions of Mercury are exposed to dust as a result of the orbital elements of Mercury and of the Main Belt particles (inclination less than 20°). Our results offer important constraints on transport models used for interpreting measurements of this exosphere, but also inform studies of space weathering of Mercury's surface.
Volume
264
Start page
220
Issn Identifier
0019-1035
Ads BibCode
2016Icar..264..220B
Rights
restricted
File(s)![Thumbnail Image]()
Loading...
Name
1-s2.0-S0019103515004467-main.pdf
Description
[administrators only]
Size
1.05 MB
Format
Adobe PDF
Checksum (MD5)
c124250ec5a170c0397b987504ccfb36