Skip navigation
  • INAF logo
  • Home
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects
  • Explore by
    • Research outputs
    • Researchers
    • Organization units
    • Projects
  • Login:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
  • Italian
  • English

  1. OA@INAF
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12386/26531
Title: ATLASGAL-selected massive clumps in the inner Galaxy. III. Dust continuum characterization of an evolutionary sample
Authors: König, C.
Urquhart, J. S.
Csengeri, T.
Leurini, Silvia 
Wyrowski, F.
GIANNETTI, ANDREA 
Wienen, M.
Pillai, T.
Kauffmann, J.
Menten, K. M.
Schuller, F.
Issue Date: 2017
Journal: ASTRONOMY & ASTROPHYSICS 
Number: 599
First Page: A139
Abstract: Context. Massive-star formation and the processes involved are still poorly understood. The ATLASGAL survey provides an ideal basis for detailed studies of large numbers of massive-star forming clumps covering the whole range of evolutionary stages. The ATLASGAL Top100 is a sample of clumps selected by their infrared and radio properties to be representative for the whole range of evolutionary stages. <BR /> Aims: The ATLASGAL Top100 sources are the focus of a number of detailed follow-up studies that will be presented in a series of papers. In the present work we use the dust continuum emission to constrain the physical properties of this sample and identify trends as a function of source evolution. <BR /> Methods: We determine flux densities from mid-infrared to submillimeter wavelength (8-870 μm) images and use these values to fit their spectral energy distributions and determine their dust temperature and flux. Combining these with recent distances from the literature including maser parallax measurements we determine clump masses, luminosities and column densities. <BR /> Results: We define four distinct source classes from the available continuum data and arrange these into an evolutionary sequence. This begins with sources found to be dark at 70 μm, followed by 24 μm weak sources with an embedded 70 μm source, continues through mid-infrared bright sources and ends with infrared bright sources associated with radio emission (I.e., H II regions). We find trends for increasing temperature, luminosity, and column density with the proposed evolution sequence, confirming that this sample is representative of different evolutionary stages of massive star formation. Our sources span temperatures from approximately 11 to 41 K, with bolometric luminosities in the range 57 L<SUB>☉</SUB>-3.8 × 10<SUP>6</SUP>L<SUB>☉</SUB>. The highest masses reach 4.3 × 10<SUP>4</SUP>M<SUB>☉</SUB> and peak column densities up to 1.1 × 10<SUP>24</SUP> cm<SUP>-1</SUP>, and therefore have the potential to form the most massive O-type stars. We show that at least 93 sources (85%) of this sample have the ability to form massive stars and that most are gravitationally unstable and hence likely to be collapsing. <BR /> Conclusions: The highest column density ATLASGAL sources cover the whole range of evolutionary stages from the youngest to the most evolved high-mass-star forming clumps. Study of these clumps provides a unique starting point for more in-depth research on massive-star formation in four distinct evolutionary stages whose well defined physical parameters afford more detailed studies. As most of the sample is closer than 5 kpc, these sources are also ideal for follow-up observations with high spatial resolution. <P />Full Table 1, including fluxes, is only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (<A href="http://130.79.128.5">http://130.79.128.5</A>) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A139">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A139</A>
URI: http://hdl.handle.net/20.500.12386/26531
URL: https://www.aanda.org/articles/aa/abs/2017/03/aa26841-15/aa26841-15.html
ISSN: 0004-6361
DOI: 10.1051/0004-6361/201526841
Bibcode ADS: 2017A&A...599A.139K
Fulltext: open
Appears in Collections:1.01 Articoli in rivista

Files in This Item:
File Description SizeFormat
aa26841-15.pdfPDF editoriale27.86 MBAdobe PDFView/Open
1610.09055.pdfpostprint2.4 MBAdobe PDFView/Open
DOI 10.1051 0004-6361 201526841.pdfMiur236.17 kBAdobe PDFView/Open
Show full item record

Page view(s)

67
checked on Mar 30, 2023

Download(s)

50
checked on Mar 30, 2023

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are published in Open Access, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects

Informazioni e guide per autori

https://openaccess-info.inaf.it: tutte le informazioni sull'accesso aperto in INAF

Come si inserisce un prodotto: le guide a OA@INAF

La Policy INAF sull'accesso aperto

Documenti e modelli scaricabili

Feedback
Built with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE