Please use this identifier to cite or link to this item:
http://hdl.handle.net/20.500.12386/26819
Title: | TRUST. I. A 3D externally illuminated slab benchmark for dust radiative transfer | Authors: | Gordon, K. D. Baes, M. BIANCHI, SIMONE Camps, P. Juvela, M. Kuiper, R. Lunttila, T. Misselt, K. A. Natale, G. Robitaille, T. Steinacker, J. |
Issue Date: | 2017 | Journal: | ASTRONOMY & ASTROPHYSICS | Number: | 603 | First Page: | A114 | Abstract: | Context. The radiative transport of photons through arbitrary three-dimensional (3D) structures of dust is a challenging problem due to the anisotropic scattering of dust grains and strong coupling between different spatial regions. The radiative transfer problem in 3D is solved using Monte Carlo or Ray Tracing techniques as no full analytic solution exists for the true 3D structures. <BR /> Aims: We provide the first 3D dust radiative transfer benchmark composed of a slab of dust with uniform density externally illuminated by a star. This simple 3D benchmark is explicitly formulated to provide tests of the different components of the radiative transfer problem including dust absorption, scattering, and emission. <BR /> Methods: The details of the external star, the slab itself, and the dust properties are provided. This benchmark includes models with a range of dust optical depths fully probing cases that are optically thin at all wavelengths to optically thick at most wavelengths. The dust properties adopted are characteristic of the diffuse Milky Way interstellar medium. This benchmark includes solutions for the full dust emission including single photon (stochastic) heating as well as two simplifying approximations: One where all grains are considered in equilibrium with the radiation field and one where the emission is from a single effective grain with size-distribution-averaged properties. A total of six Monte Carlo codes and one Ray Tracing code provide solutions to this benchmark. <BR /> Results: The solution to this benchmark is given as global spectral energy distributions (SEDs) and images at select diagnostic wavelengths from the ultraviolet through the infrared. Comparison of the results revealed that the global SEDs are consistent on average to a few percent for all but the scattered stellar flux at very high optical depths. The image results are consistent within 10%, again except for the stellar scattered flux at very high optical depths. The lack of agreement between different codes of the scattered flux at high optical depths is quantified for the first time. Convergence tests using one of the Monte Carlo codes illustrate the sensitivity of the solutions to various model parameters. <BR /> Conclusions: We provide the first 3D dust radiative transfer benchmark and validate the accuracy of this benchmark through comparisons between multiple independent codes and detailed convergence tests. | URI: | http://hdl.handle.net/20.500.12386/26819 | URL: | https://www.aanda.org/articles/aa/abs/2017/07/aa29976-16/aa29976-16.html | ISSN: | 0004-6361 | DOI: | 10.1051/0004-6361/201629976 | Bibcode ADS: | 2017A&A...603A.114G | Fulltext: | open |
Appears in Collections: | 1.01 Articoli in rivista |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
aa29976-16.pdf | Pdf editoriale | 8.05 MB | Adobe PDF | View/Open |
Page view(s)
75
checked on Oct 15, 2024
Download(s)
13
checked on Oct 15, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are published in Open Access, unless otherwise indicated.