Repository logo
  • English
  • Italiano
Log In
Have you forgotten your password?
  1. Home
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
  5. Globular clusters with Gaia
 

Globular clusters with Gaia

Journal
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY  
Date Issued
2017
Author(s)
PANCINO, ELENA  
•
BELLAZZINI, Michele  
•
Giuffrida, G.
•
MARINONI, SILVIA  
DOI
10.1093/mnras/stx079
Abstract
The treatment of crowded fields in Gaia data will only be a reality in a few years from now. In particular, for globular clusters, only the end-of-mission data (public in 2022-2023) will have the necessary full crowding treatment and will reach sufficient quality for the faintest stars. As a consequence, the work on the deblending and decontamination pipelines is still ongoing. We describe the present status of the pipelines for different Gaia instruments, and we model the end-of-mission crowding errors on the basis of available information. We then apply the nominal post-launch Gaia performances, appropriately worsened by the estimated crowding errors, to a set of 18 simulated globular clusters with different concentration, distance and field contamination. We conclude that there will be 103-104 stars with astrometric performances virtually untouched by crowding (contaminated by <1 mmag) in the majority of clusters. The most limiting factor will be field crowding, not cluster crowding: the most contaminated clusters will only contain 10-100 clean stars. We also conclude that (I) the systemic proper motions and parallaxes will be determined to 1 per cent or better up to ≃15 kpc, and the nearby clusters will have radial velocities to a few km s-1; (II) internal kinematics will be of unprecedented quality, cluster masses will be determined to ≃10 per cent up to 15 kpc and beyond, and it will be possible to identify differences of a few km s-1 or less in the kinematics (if any) of cluster sub-populations up to 10 kpc and beyond; (III) the brightest stars (V ≃ 17 mag) will have space-quality, wide-field photometry (mmag errors), and all Gaia photometry will have 1-3 per cent errors on the absolute photometric calibration.
Volume
467
Issue
1
Start page
412
Uri
http://hdl.handle.net/20.500.12386/27042
Url
https://academic.oup.com/mnras/article/467/1/412/2896688
Issn Identifier
0035-8711
Ads BibCode
2017MNRAS.467..412P
Rights
open.access
File(s)
Loading...
Thumbnail Image
Name

stx079.pdf

Description
Pdf editoriale
Size

4.27 MB

Format

Adobe PDF

Checksum (MD5)

007a33d5a55fc0282c2f4a05d17ff863

Explore By
  • Communities and Collection
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Information and guides for authors
  • https://openaccess-info.inaf.it: all about open access in INAF
  • How to enter a product: guides to OA@INAF
  • The INAF Policy on Open Access
  • Downloadable documents and templates

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback