Skip navigation
  • INAF logo
  • Home
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects
  • Explore by
    • Research outputs
    • Researchers
    • Organization units
    • Projects
  • Login:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
  • Italian
  • English

  1. OA@INAF
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12386/27104
Title: X-shooter spectroscopy of young stellar objects in Lupus. Lithium, iron, and barium elemental abundances
Authors: BIAZZO, Katia 
Frasca, A. 
ALCALA', JUAN MANUEL 
ZUSI, MICHELE 
COVINO, Elvira 
RANDICH, Maria Sofia 
Esposito, M.
Manara, C. F.
ANTONIUCCI, Simone 
NISINI, Brunella 
RIGLIACO, ELISABETTA 
GETMAN, FEDOR 
Issue Date: 2017
Journal: ASTRONOMY & ASTROPHYSICS 
Number: 605
First Page: A66
Abstract: Aims: With the purpose of performing a homogeneous determination of elemental abundances for members of the Lupus T association, we analyzed three chemical elements: lithium, iron, and barium. The aims were: 1) to derive the lithium abundance for the almost complete sample ( 90%) of known class II stars in the Lupus I, II, III, and IV clouds; 2) to perform chemical tagging of a region where few iron abundance measurements have been obtained in the past, and no determination of the barium content has been done up to now. We also investigated possible barium enhancement at the very young age of the region, as this element has become increasingly interesting in the last few years following the evidence of barium over-abundance in young clusters, the origin of which is still unknown. Methods: Using the X-shooter spectrograph mounted on the Unit 2 (UT2) at the Very Large Telescope (VLT), we analyzed the spectra of 89 cluster members, both class II (82) and class III (7) stars. We measured the strength of the lithium line at λ6707.8 Å and derived the abundance of this element through equivalent width measurements and curves of growth. For six class II stars we also derived the iron and barium abundances using the spectral synthesis method and the code MOOG. The veiling contribution was taken into account in the abundance analysis for all three elements. Results: We find a dispersion in the strength of the lithium line at low effective temperatures and identify three targets with severe Li depletion. The nuclear age inferred for these highly lithium-depleted stars is around 15 Myr, which exceeds by an order of magnitude the isochronal one. We derive a nearly solar metallicity for the members whose spectra could be analyzed. We find that Ba is over-abundant by 0.7 dex with respect to the Sun. Since current theoretical models cannot reproduce this abundance pattern, we investigated whether this unusually large Ba content might be related to effects due to stellar parameters, stellar activity, and accretion. <BR /> Conclusions: We are unable to firmly assess whether the dispersion in the lithium content we observe is a consequence of an age spread. As in other star-forming regions, no metal-rich members are found in Lupus, giving support to a recent hypothesis that the iron abundance distribution of most of the nearby young regions could be the result of a common and widespread star formation episode involving the Galactic thin disk. Among the possible causes or sources for Ba enhancement examined here, none is sufficient to account for the over-abundance of this element at a 0.7 dex level.
URI: http://hdl.handle.net/20.500.12386/27104
URL: https://www.aanda.org/articles/aa/full_html/2017/09/aa30850-17/aa30850-17.html
ISSN: 0004-6361
DOI: 10.1051/0004-6361/201730850
Bibcode ADS: 2017A&A...605A..66B
Fulltext: open
Appears in Collections:1.01 Articoli in rivista

Files in This Item:
File Description SizeFormat 
paper_published.pdfpdf editoriale1.17 MBAdobe PDFView/Open
paper_published.pdf1.17 MBUnknownView/Open
Show full item record

Page view(s)

19
checked on Jan 20, 2021

Download(s)

7
checked on Jan 20, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are published in Open Access, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects

Informazioni e guide per autori

https://openaccess-info.inaf.it: tutte le informazioni sull'accesso aperto in INAF

Come si inserisce un prodotto: le guide a OA@INAF

La Policy INAF sull'accesso aperto

Documenti e modelli scaricabili

Feedback
Built with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE