Revisiting the role of the thermally pulsating asymptotic-giant-branch phase in high-redshift galaxies
Date Issued
2016
Author(s)
Capozzi, Diego
•
Maraston,Claudia
•
Daddi, Emanuele
•
•
•
Abstract
We study the debated contribution from thermally pulsing asymptotic-giant-branch (TP-AGB) stars in evolutionary population synthesis models. We investigate the spectral energy distributions (SEDs) of a sample of 51 spectroscopically confirmed, high-z (1.3 < zspec < 2.7), galaxies using three evolutionary population synthesis models with strong, mild and light TP-AGB. Our sample is the largest of spectroscopically confirmed galaxies on which such models are tested so far. Galaxies were selected as passive, but we model them using a variety of star formation histories in order not to be dependent on this pre-selection. We find that the observed SEDs are best fitted with a significant contribution of TP-AGB stars or with substantial dust attenuation. Without including reddening, TP-AGB-strong models perform better and deliver solutions consistent within 1σ from the best-fitted ones in the vast majority of cases. Including reddening, all models perform similarly. Using independent constraints from observations in the mid- and far-IR, we show that low/negligible dust attenuation, I.e. E(B - V) ≲ 0.05, should be preferred for the SEDs of passively selected galaxies. Given that TP-AGB-light models give systematically older ages for passive galaxies, we suggest number counts of passive galaxies at higher redshifts as a further test to discriminate among stellar population models.
Volume
456
Issue
1
Start page
790
Issn Identifier
0035-8711
Ads BibCode
2016MNRAS.456..790C
Rights
open.access
File(s)![Thumbnail Image]()
Loading...
Name
stv2692.pdf
Description
Pdf editoriale
Size
3.51 MB
Format
Adobe PDF
Checksum (MD5)
204266858d603fa288363c118ef53d41