Skip navigation
  • INAF logo
  • Home
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects
  • Explore by
    • Research outputs
    • Researchers
    • Organization units
    • Projects
  • Login:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
  • Italian
  • English

  1. OA@INAF
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12386/28197
Title: Self-enrichment in globular clusters: the extreme He-rich populationof NGC 2808
Authors: DI CRISCIENZO, Marcella 
VENTURA, Paolo 
D'Antona, F.
Dell'Agli, Flavia 
Tailo, M.
Issue Date: 2018
Journal: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 
Number: 479
Issue: 4
First Page: 5325
Abstract: Almost several decades after the discovery of the first multiple populations in galactic globular clusters (GC), the debate on their formation is still extremely current and NGC 2808 remains one of the best benchmark to test any scenario for their origin and the evolution. In this work, we focus on the chemical composition of stars belonging to the extreme He-rich population populated by stars with the most extreme abundance of Mg, Al, Na, O, and Si. We checked whether the most recent measures are consistent with the asymptotic giant branch (AGB) yields of stars of 6.5-8 M_{☉}. These stars evolve on time scales of the order of 40-60 Myr and eject matter strongly enriched in helium, owing to a deep penetration of the surface convective zone down to regions touched by CNO nucleosynthesis occurring after the core He-burning phase. Since the big unknown of the AGB phase of massive stars is the mass-loss, we propose a new approch that takes into account the effects of the radiation pressure on dust particles. We show that this more realistic description is able to reproduce the observed abundances of Mg, Al, Na, and Si in these extreme stars. The large spread in the oxygen abundances is explained by invoking deep mixing during the red giant branch phase. It will be possible to check this work hypothesis as soon as the oxygen measurements of the main-sequence stars of NGC 2808 will be available.
URI: http://hdl.handle.net/20.500.12386/28197
URL: https://academic.oup.com/mnras/article/479/4/5325/5049309
ISSN: 0035-8711
DOI: 10.1093/mnras/sty1762
Bibcode ADS: 2018MNRAS.479.5325D
Fulltext: open
Appears in Collections:1.01 Articoli in rivista

Files in This Item:
File Description SizeFormat 
sty1762.pdfPdf editoriale497.19 kBAdobe PDFView/Open
Show full item record

Page view(s)

4
checked on Jan 17, 2021

Download(s)

2
checked on Jan 17, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are published in Open Access, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects

Informazioni e guide per autori

https://openaccess-info.inaf.it: tutte le informazioni sull'accesso aperto in INAF

Come si inserisce un prodotto: le guide a OA@INAF

La Policy INAF sull'accesso aperto

Documenti e modelli scaricabili

Feedback
Built with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE