Skip navigation
  • INAF logo
  • Home
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects
  • Explore by
    • Research outputs
    • Researchers
    • Organization units
    • Projects
  • Login:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
  • Italian
  • English

  1. OA@INAF
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12386/28365
Title: Linking interstellar and cometary O2: a deep search for 16O 18O in the solar-type protostar IRAS 16293-2422
Authors: Taquet, V.
van Dishoeck, E. F.
Swayne, M.
Harsono, D.
Jørgensen, J. K.
Maud, L.
Ligterink, N. F. W.
Müller, H. S. P.
CODELLA, CLAUDIO 
Altwegg, K.
Bieler, A.
Coutens, A.
Drozdovskaya, M. N.
Furuya, K.
Persson, M. V.
van't Hoff, M. L. R.
Walsh, C.
Wampfler, S. F.
Issue Date: 2018
Journal: ASTRONOMY & ASTROPHYSICS 
Number: 618
First Page: A11
Abstract: Recent measurements carried out at comet 67P/Churyumov-Gerasimenko (67P) with the Rosetta probe revealed that molecular oxygen, O<SUB>2</SUB>, is the fourth most abundant molecule in comets. Models show that O<SUB>2</SUB> is likely of primordial nature, coming from the interstellar cloud from which our solar system was formed. However, gaseous O<SUB>2</SUB> is an elusive molecule in the interstellar medium with only one detection towards quiescent molecular clouds, in the ρ Oph A core. We perform a deep search for molecular oxygen, through the 2<SUB>1</SUB>-0<SUB>1</SUB> rotational transition at 234 GHz of its <SUP>16</SUP>O<SUP>18</SUP>O isotopologue, towards the warm compact gas surrounding the nearby Class 0 protostar IRAS 16293-2422 B with the ALMA interferometer. We also look for the chemical daughters of O<SUB>2</SUB>, HO<SUB>2</SUB>, and H<SUB>2</SUB>O<SUB>2</SUB>. Unfortunately, the H<SUB>2</SUB>O<SUB>2</SUB> rotational transition is dominated by ethylene oxide c-C<SUB>2</SUB>H<SUB>4</SUB>O while HO<SUB>2</SUB> is not detected. The targeted <SUP>16</SUP>O<SUP>18</SUP>O transition is surrounded by two brighter transitions at ± 1 km s<SUP>-1</SUP> relative to the expected <SUP>16</SUP>O<SUP>18</SUP>O transition frequency. After subtraction of these two transitions, residual emission at a 3σ level remains, but with a velocity offset of 0.3-0.5 km s<SUP>-1</SUP> relative to the source velocity, rendering the detection "tentative". We derive the O<SUB>2</SUB> column density for two excitation temperatures T<SUB>ex</SUB> of 125 and 300 K, as indicated by other molecules, in order to compare the O<SUB>2</SUB> abundance between IRAS 16293 and comet 67P. Assuming that <SUP>16</SUP>O<SUP>18</SUP>O is not detected and using methanol CH<SUB>3</SUB>OH as a reference species, we obtain a [O<SUB>2</SUB>]/[CH<SUB>3</SUB>OH] abundance ratio lower than 2-5, depending on the assumed T<SUB>ex</SUB>, a three to four times lower abundance than the [O<SUB>2</SUB>]/[CH<SUB>3</SUB>OH] ratio of 5-15 found in comet 67P. Such a low O<SUB>2</SUB> abundance could be explained by the lower temperature of the dense cloud precursor of IRAS 16293 with respect to the one at the origin of our solar system that prevented efficient formation of O<SUB>2</SUB> in interstellar ices.
URI: http://hdl.handle.net/20.500.12386/28365
URL: https://www.aanda.org/articles/aa/abs/2018/10/aa33175-18/aa33175-18.html
ISSN: 0004-6361
DOI: 10.1051/0004-6361/201833175
Bibcode ADS: 2018A&A...618A..11T
Fulltext: open
Appears in Collections:1.01 Articoli in rivista

Files in This Item:
File Description SizeFormat 
aa33175-18.pdfPdf editoriale994.81 kBAdobe PDFView/Open
Show full item record

Page view(s)

5
checked on Jan 17, 2021

Download(s)

2
checked on Jan 17, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are published in Open Access, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects

Informazioni e guide per autori

https://openaccess-info.inaf.it: tutte le informazioni sull'accesso aperto in INAF

Come si inserisce un prodotto: le guide a OA@INAF

La Policy INAF sull'accesso aperto

Documenti e modelli scaricabili

Feedback
Built with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE