Skip navigation
  • INAF logo
  • Home
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects
  • Explore by
    • Research outputs
    • Researchers
    • Organization units
    • Projects
  • Login:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
  • Italian
  • English

  1. OA@INAF
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12386/28600
Title: ALMA survey of Class II protoplanetary disks in Corona Australis: a young region with low disk masses
Authors: Cazzoletti, P.
Manara, C. F.
Baobab Liu, H.
van Dishoeck, E. F.
Facchini, S.
ALCALA', JUAN MANUEL 
Ansdell, M.
TESTI, Leonardo 
Williams, J. P.
Carrasco-González, C.
Dong, R.
Forbrich, J.
Fukagawa, M.
Galván-Madrid, R.
Hirano, N.
Hogerheijde, M.
Hasegawa, Y.
Muto, T.
Pinilla, P.
Takami, M.
Tamura, M.
Tazzari, M.
Wisniewski, J. P.
Issue Date: 2019
Journal: ASTRONOMY & ASTROPHYSICS 
Number: 626
First Page: A11
Abstract: Context. In recent years, the disk populations in a number of young star-forming regions have been surveyed with the Atacama Large Millimeter/submillimeter Array (ALMA). Understanding the disk properties and their correlation with the properties of the central star is critical to understanding planet formation. In particular, a decrease of the average measured disk dust mass with the age of the region has been observed, consistent with grain growth and disk dissipation. <BR /> Aims: We aim to compare the general properties of disks and their host stars in the nearby (d = 160 pc) Corona Australis (CrA) star forming region to those of the disks and stars in other regions. <BR /> Methods: We conducted high-sensitivity continuum ALMA observations of 43 Class II young stellar objects in CrA at 1.3 mm (230 GHz). The typical spatial resolution is 0.3''. The continuum fluxes are used to estimate the dust masses of the disks, and a survival analysis is performed to estimate the average dust mass. We also obtained new VLT/X-shooter spectra for 12 of the objects in our sample for which spectral type (SpT) information was missing. <BR /> Results: Twenty-four disks were detected, and stringent limits have been put on the average dust mass of the nondetections. Taking into account the upper limits, the average disk mass in CrA is 6 ± 3 M<SUB>⊕</SUB>. This value is significantly lower than that of disks in other young (1-3 Myr) star forming regions (Lupus, Taurus, Chamaeleon I, and Ophiuchus) and appears to be consistent with the average disk mass of the 5-10 Myr-old Upper Sco. The position of the stars in our sample on the Herzsprung-Russel diagram however seems to confirm that CrA has an age similar to Lupus. Neither external photoevaporation nor a lower-than-usual stellar mass distribution can explain the low disk masses. On the other hand, a low-mass disk population could be explained if the disks were small, which could happen if the parent cloud had a low temperature or intrinsic angular momentum, or if the angular momentum of the cloud were removed by some physical mechanism such as magnetic braking. Even in detected disks, none show clear substructures or cavities. <BR /> Conclusions: Our results suggest that in order to fully explain and understand the dust mass distribution of protoplanetary disks and their evolution, it may also be necessary to take into consideration the initial conditions of star- and disk-formation process. These conditions at the very beginning may potentially vary from region to region, and could play a crucial role in planet formation and evolution. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 299.C-5048 and 0101.C-0893.
URI: http://hdl.handle.net/20.500.12386/28600
URL: https://www.aanda.org/articles/aa/abs/2019/06/aa35273-19/aa35273-19.html
ISSN: 0004-6361
DOI: 10.1051/0004-6361/201935273
Bibcode ADS: 2019A&A...626A..11C
Fulltext: open
Appears in Collections:1.01 Articoli in rivista

Files in This Item:
File Description SizeFormat 
aa35273-19.pdfpdf editoriale13.38 MBAdobe PDFView/Open
Show full item record

Page view(s)

4
checked on Jan 19, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are published in Open Access, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects

Informazioni e guide per autori

https://openaccess-info.inaf.it: tutte le informazioni sull'accesso aperto in INAF

Come si inserisce un prodotto: le guide a OA@INAF

La Policy INAF sull'accesso aperto

Documenti e modelli scaricabili

Feedback
Built with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE