Skip navigation
  • INAF logo
  • Home
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects
  • Explore by
    • Research outputs
    • Researchers
    • Organization units
    • Projects
  • Login:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
  • Italian
  • English

  1. OA@INAF
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12386/28689
Title: SOPHIE velocimetry of Kepler transit candidates. XIV. A joint photometric, spectroscopic, and dynamical analysis of the Kepler-117 system
Authors: BRUNO, GIOVANNI 
Almenara, J. -M.
Barros, S. C. C.
Santerne, A.
Diaz, R. F.
Deleuil, M.
Damiani, C.
BONOMO, ALDO STEFANO 
Boisse, I.
Bouchy, F.
Hébrard, G.
Montagnier, G.
Issue Date: 2015
Journal: ASTRONOMY & ASTROPHYSICS 
Number: 573
First Page: A124
Abstract: As part of our follow-up campaign of Kepler planets, we observed Kepler-117 with the SOPHIE spectrograph at the Observatoire de Haute-Provence. This F8-type star hosts two transiting planets in non-resonant orbits. The planets, Kepler-117 b and c, have orbital periods ≃ 18.8 and ≃ 50.8 days, and show transit-timing variations (TTVs) of several minutes. We performed a combined Markov chain Monte Carlo (MCMC) fit on transits, radial velocities, and stellar parameters to constrain the characteristics of the system. We included the fit of the TTVs in the MCMC by modeling them with dynamical simulations. In this way, consistent posterior distributions were drawn for the system parameters. According to our analysis, planets b and c have notably different masses (0.094 ± 0.033 and 1.84 ± 0.18M<SUB>J</SUB>) and low orbital eccentricities (0.0493 ± 0.0062 and 0.0323 ± 0.0033). The uncertainties on the derived parameters are strongly reduced if the fit of the TTVs is included in the combined MCMC. The TTVs allow measuring the mass of planet b although its radial velocity amplitude is poorly constrained. Finally, we checked that the best solution is dynamically stable. <P />Appendix A is available in electronic form at <A href="http://www.aanda.org/10.1051/0004-6361/201424591/olm">http://www.aanda.org</A>Radial velocity tables are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/573/A124">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/573/A124</A>
Acknowledgments: This paper includes data collected by the Kepler mission. Funding for the Kepler mission is provided by the NASA Science Mission directorate. We made use of the Mikulski Archive for Space Telescopes (MAST). Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. We thank the technical team at the Observatoire de Haute-Provence for their support with the SOPHIE instrument and the 1.93 m telescope and in particular for the essential work of the night assistants. Financial support for the SOPHIE observations comes from the Programme National de Planetologie (PNP) of CNRS/INSU, France is gratefully acknowledged. We also acknowledge support from the French National Research Agency (ANR-08- JCJC-0102-01). The team at LAM acknowledges support by CNES grants 98761 (SCCB), 426808 (CD), and 251091 (JMA). A.S. acknowledge the support from the European Research Council/European Community under the FP7 through Starting Grant agreement number 239953. A.S. is supported by the European Union under a Marie Curie Intra-European Fellowship for Career Development with reference FP7-PEOPLE-2013-IEF, number 627202. A.S.B. acknowledges funding from the European Union Seventh Framework Programme (FP7/2007–2013) under Grant agreement No. 313014 (ETAEARTH). We thank John Chambers for his explanations about the use of mercury and Rosemary Mardling for the fruitful discussions about the dynamic of three-body systems. This research was made possible through the use of data from different surveys: the AAVSO Photometric All-Sky Survey (APASS), funded by the Robert Martin Ayers Sciences Fund; the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation; the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This research has made reference to the Exoplanet Orbit Database and the Exoplanet Data Explorer at exoplanets.org.
URI: http://hdl.handle.net/20.500.12386/28689
URL: https://www.aanda.org/articles/aa/full_html/2015/01/aa24591-14/aa24591-14.html
ISSN: 0004-6361
DOI: 10.1051/0004-6361/201424591
Bibcode ADS: 2015A&A...573A.124B
Fulltext: open
Appears in Collections:1.01 Articoli in rivista

Files in This Item:
File Description SizeFormat 
Brunoetal_2015.pdfPDF editoriale2.45 MBAdobe PDFView/Open
Show full item record

Page view(s)

4
checked on Jan 22, 2021

Download(s)

2
checked on Jan 22, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are published in Open Access, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects

Informazioni e guide per autori

https://openaccess-info.inaf.it: tutte le informazioni sull'accesso aperto in INAF

Come si inserisce un prodotto: le guide a OA@INAF

La Policy INAF sull'accesso aperto

Documenti e modelli scaricabili

Feedback
Built with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE