Please use this identifier to cite or link to this item:
http://hdl.handle.net/20.500.12386/28911
Title: | The HADES RV programme with HARPS-N at TNG. XI. GJ 685 b: a warm super-Earth around an active M dwarf | Authors: | Pinamonti, Matteo SOZZETTI, Alessandro GIACOBBE, Paolo Damasso, Mario SCANDARIATO, GAETANO Perger, M. González Hernández, J. I. LANZA, Antonino Francesco MALDONADO PRADO, Jesus MICELA, Giuseppina Suárez Mascareño, A. Toledo-Padrón, B. AFFER, Laura BENATTI, SERENA BIGNAMINI, ANDREA BONOMO, ALDO STEFANO CLAUDI, Riccardo COSENTINO, Rosario DESIDERA, Silvano MAGGIO, Antonio Martinez Fiorenzano, A. PAGANO, Isabella Piotto, G. RAINER, Monica Rebolo, R. Ribas, I. |
Issue Date: | 2019 | Journal: | ASTRONOMY & ASTROPHYSICS | Number: | 625 | First Page: | A126 | Abstract: | Context. Small rocky planets seem to be very abundant around low-mass M-type stars. Their actual planetary population is however not yet precisely understood. Currently, several surveys aim to expand the statistics with intensive detection campaigns, both photometric and spectroscopic. <BR /> Aims: The HADES program aims to improve the current statistics through the in-depth analysis of accurate radial-velocity (RV) monitoring in a narrow range of spectral sub-types, with the precision needed to detect small planets with a few Earth masses. <BR /> Methods: We analyse 106 spectroscopic HARPS-N observations of the active M0-type star GJ 685 taken over the past five years. We combine these data with photometric measurements from different observatories to accurately model the stellar rotation and disentangle its signals from genuine Doppler planetary signals in the RV data. We run an MCMC analysis on the RV and activity index time series to model the planetary and stellar signals present in the data, applying Gaussian Process regression technique to deal with the stellar activity signals. <BR /> Results: We identify three periodic signals in the RV time series, with periods of 9, 24, and 18 d. Combining the analyses of the photometry of the star with the activity indexes derived from the HARPS-N spectra, we identify the 18 d and 9 d signals as activity-related, corresponding to the stellar rotation period and its first harmonic, respectively. The 24 d signal shows no relation to any activity proxy, and therefore we identify it as a genuine planetary signal. We find the best-fit model describing the Doppler signal of the newly found planet, GJ 685 b, corresponding to an orbital period P<SUB>b</SUB> = 24.160<SUB>-0.047</SUB><SUP>+0.061</SUP> d and a minimum mass M<SUB>P</SUB> sin i = 9.0<SUB>-1.8</SUB><SUP>+1.7</SUP> M<SUB>⊕</SUB>. We also study a sample of 70 RV-detected M-dwarf planets, and present new statistical evidence of a difference in mass distribution between the populations of single- and multi-planet systems, which can shed new light on the formation mechanisms of low-mass planets around late-type stars. <P />Based on observations made with the Italian Telescopio Nazionale Galileo (TNG), operated on the island of La Palma by the INAF - Fundación Galileo Galilei at the Roche de Los Muchachos Observatory of the Instituto de Astrofísica de Canarias (IAC); photometric observations made with the APACHE array located at the Astronomical Observatory of the Aosta Valley; photometric observations made with the robotic telescope APT2 (within the EXORAP programme) located at Serra La Nave on Mt. Etna. | URI: | http://hdl.handle.net/20.500.12386/28911 | URL: | http://arxiv.org/abs/1903.11853v1 https://www.aanda.org/articles/aa/full_html/2019/05/aa34969-18/aa34969-18.html |
ISSN: | 0004-6361 | DOI: | 10.1051/0004-6361/201834969 | Bibcode ADS: | 2019A&A...625A.126P | Fulltext: | open |
Appears in Collections: | 1.01 Articoli in rivista |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Pinamontietal.2019.pdf | Pdf editoriale | 5.49 MB | Adobe PDF | View/Open |
Page view(s)
54
checked on Sep 15, 2024
Download(s)
29
checked on Sep 15, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are published in Open Access, unless otherwise indicated.