Skip navigation
  • INAF logo
  • Home
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects
  • Explore by
    • Research outputs
    • Researchers
    • Organization units
    • Projects
  • Login:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
  • Italian
  • English

  1. OA@INAF
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12386/28939
Title: Expanding the Sample of Radio Minihalos in Galaxy Clusters
Authors: Giacintucci, S.
Markevitch, M.
CASSANO, Rossella 
VENTURI, Tiziana 
Clarke, T.E.
Kale, R.
Cuciti, V.
Issue Date: 2019
Journal: THE ASTROPHYSICAL JOURNAL 
Number: 880
First Page: 70
Abstract: Radio minihalos are diffuse synchrotron sources of unknown origin found in the cool cores of some galaxy clusters. We use GMRT and VLA data to expand the sample of minihalos by reporting three new minihalo detections (A2667, A907, and PSZ1 G139.61+24.20) and confirming minihalos in five clusters (MACS J0159.8-0849, MACS J0329.6-0211, RXC J2129.6+0005, AS 780, and A3444). With these new detections and confirmations, the sample now stands at 23, the largest sample to date. For consistency, we also reanalyze archival VLA 1.4 GHz observations of seven known minihalos. We revisit possible correlations between the nonthermal emission and the thermal properties of their cluster hosts. Consistent with our earlier findings from a smaller sample, we find no strong relation between the minihalo radio luminosity and the total cluster mass. Instead, we find a strong positive correlation between the minihalo radio power and X-ray bolometric luminosity of the cool core (r < 70 kpc). This supplements our earlier result that most, if not all, cool cores in massive clusters contain a minihalo. Comparison of radio and Chandra X-ray images indicates that the minihalo emission is typically confined by concentric sloshing cold fronts in the cores of most of our clusters, supporting the hypothesis that minihalos arise from electron reacceleration by turbulence caused by core gas sloshing. Taken together, our findings suggest that the origin of minihalos should be closely related to the properties of thermal plasma in cluster cool cores.
URI: http://hdl.handle.net/20.500.12386/28939
URL: https://iopscience.iop.org/article/10.3847/1538-4357/ab29f1
ISSN: 0004-637X
DOI: 10.3847/1538-4357/ab29f1
Bibcode ADS: 2019ApJ...880...70G
Fulltext: open
Appears in Collections:1.01 Articoli in rivista

Files in This Item:
File Description SizeFormat
Giacintucci_2019_ApJ_880_70.pdfpdf editoriale8.57 MBAdobe PDFView/Open
Show full item record

Page view(s)

35
checked on Mar 30, 2023

Download(s)

25
checked on Mar 30, 2023

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are published in Open Access, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects

Informazioni e guide per autori

https://openaccess-info.inaf.it: tutte le informazioni sull'accesso aperto in INAF

Come si inserisce un prodotto: le guide a OA@INAF

La Policy INAF sull'accesso aperto

Documenti e modelli scaricabili

Feedback
Built with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE