Please use this identifier to cite or link to this item:
http://hdl.handle.net/20.500.12386/28983
Title: | The gentle monster PDS 456. Kiloparsec-scale molecular outflow and its implications for QSO feedback | Authors: | BISCHETTI, MANUELA PICONCELLI, Enrico Feruglio, Chiara FIORE, Fabrizio Carniani, S. Brusa, M. CICONE, CLAUDIA Vignali, C. BONGIORNO, ANGELA CRESCI, GIOVANNI Mainieri, V. Maiolino, R. Marconi, Alessandro NARDINI, EMANUELE ZAPPACOSTA, Luca |
Issue Date: | 2019 | Journal: | ASTRONOMY & ASTROPHYSICS | Number: | 628 | First Page: | A118 | Abstract: | We report on the first ALMA observation of the CO(3-2) and rest-frame ∼340 GHz continuum emission in PDS 456, which is the most luminous, radio-quiet QSO in the local Universe (z ≃ 0.18), with a bolometric luminosity L<SUB>Bol</SUB> ∼ 10<SUP>47</SUP> erg s<SUP>-1</SUP>. ALMA angular resolution allowed us to map scales as small as ∼700 pc. The molecular gas reservoir traced by the core of the very bright CO(3-2) emission line is distributed in a compact rotating disk, with a size of ∼1.3 kpc, seen close to face-on (i ∼ 25 deg). Fast CO(3-2) emission in the velocity range v ∈ [ - 1000, 500] km s<SUP>-1</SUP> is also present. Specifically, we detect several blue-shifted clumps out to ∼5 kpc from the nucleus, in addition to a compact (R ≲ 1.2 kpc), broad emission component. These components reveal a galaxy-wide molecular outflow, with a total mass M<SUB>mol</SUB><SUP>out</SUP> ∼ 2.5 × 10<SUP>8</SUP> M<SUB>☉</SUB> (for an α<SUB>CO</SUB> = 0.8 M<SUB>☉</SUB> (K km s<SUP>-1</SUP> pc<SUP>2</SUP>)<SUP>-1</SUP>) and a mass outflow rate Ṁ<SUB>mol</SUB> ∼ 290 M<SUB>☉</SUB> yr<SUP>-1</SUP>. The corresponding depletion time is τ<SUB>dep</SUB> ∼ 8 Myr, shorter than the rate at which the molecular gas is converted into stars, indicating that the detected outflow is potentially able to quench star-formation in the host. The momentum flux of the molecular outflow normalised to the radiative momentum output (i.e. L<SUB>Bol</SUB>/c) is ≲1, comparable to that of the X-ray ultra-fast outflow (UFO) detected in PDS 456. This is at odds with the expectations for an energy-conserving expansion suggested for most of the large-scale outflows detected in low-luminosity AGNs so far. We suggest three possible scenarios that may explain this observation: (i) in very luminous AGNs such as our target the molecular gas phase is tracing only a fraction of the total outflowing mass; (ii) a small coupling between the shocked gas by the UFO and the host-galaxy interstellar medium (ISM); and (iii) AGN radiation pressure may be playing an important role in driving the outflow. | URI: | http://hdl.handle.net/20.500.12386/28983 | URL: | https://www.aanda.org/articles/aa/abs/2019/08/aa35524-19/aa35524-19.html | ISSN: | 0004-6361 | DOI: | 10.1051/0004-6361/201935524 | Bibcode ADS: | 2019A&A...628A.118B | Fulltext: | open |
Appears in Collections: | 1.01 Articoli in rivista |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Bischetti_1903.10528.pdf | postprint | 1.34 MB | Adobe PDF | View/Open |
Bischetti_aa35524-19.pdf | Pdf editoriale | 1.33 MB | Adobe PDF | View/Open |
Page view(s)
44
checked on Sep 24, 2023
Download(s)
20
checked on Sep 24, 2023
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are published in Open Access, unless otherwise indicated.