Skip navigation
  • INAF logo
  • Home
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects
  • Explore by
    • Research outputs
    • Researchers
    • Organization units
    • Projects
  • Login:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
  • Italian
  • English

  1. OA@INAF
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12386/29014
Title: Physical properties of SDSS satellite galaxies in projected phase space
Authors: Pasquali, A.
Smith, R.
GALLAZZI, Anna Rita 
DE LUCIA, GABRIELLA 
ZIBETTI, Stefano 
Hirschmann, M.
Yi, S. K.
Issue Date: 2019
Journal: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 
Number: 484
Issue: 2
First Page: 1702
Abstract: We investigate how environment affects satellite galaxies using their location within the projected phase space of their host haloes from the Wang et al.'s group catalogue. Using the Yonsei Zoom-in Cluster Simulations, we derive zones of constant mean infall time \overline{T}_inf in projected phase space, and catalogue in which zone each observed galaxy falls. Within each zone, we compute the mean observed galaxy properties including specific star formation rate, luminosity-weighted age, stellar metallicity, and [α/Fe] abundance ratio. By comparing galaxies in different zones, we inspect how shifting the mean infall time from recent infallers (\overline{T}_inf < 3 Gyr) to ancient infallers (\overline{T}_{inf}> 5 Gyr) impacts galaxy properties at fixed stellar and halo mass. Ancient infallers are more quenched, and the impact of environmental quenching is visible down to low host masses (≤group masses). Meanwhile, the quenching of recent infallers is weakly dependent on host mass, indicating they have yet to respond strongly to their current environment. [α/Fe] and especially metallicity are less dependent on host mass, but show a dependence on \overline{T}_{inf}. We discuss these results in the context of longer exposure times for ancient infallers to environmental effects, which grow more efficient in hosts with a deeper potential well and a denser intracluster medium. We also compare our satellites with a control field sample, and find that even the most recent infallers (\overline{T}_{inf} < 2 Gyr) are more quenched than field galaxies, in particular for cluster mass hosts. This supports the role of pre-processing and/or faster quenching in satellites.
URI: http://hdl.handle.net/20.500.12386/29014
URL: https://academic.oup.com/mnras/article-abstract/484/2/1702/5289419?redirectedFrom=fulltext
ISSN: 0035-8711
DOI: 10.1093/mnras/sty3530
Bibcode ADS: 2019MNRAS.484.1702P
Fulltext: open
Appears in Collections:1.01 Articoli in rivista

Files in This Item:
File Description SizeFormat 
sty3530.pdfpdf editoriale3.86 MBAdobe PDFView/Open
Show full item record

Page view(s)

3
checked on Jan 16, 2021

Download(s)

2
checked on Jan 16, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are published in Open Access, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects

Informazioni e guide per autori

https://openaccess-info.inaf.it: tutte le informazioni sull'accesso aperto in INAF

Come si inserisce un prodotto: le guide a OA@INAF

La Policy INAF sull'accesso aperto

Documenti e modelli scaricabili

Feedback
Built with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE