Skip navigation
  • INAF logo
  • Home
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects
  • Explore by
    • Research outputs
    • Researchers
    • Organization units
    • Projects
  • Login:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
  • Italian
  • English

  1. OA@INAF
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12386/29283
Title: Kinetic and radiative power from optically thin accretion flows
Authors: Sadowski, A.
GASPARI, MASSIMO 
Issue Date: 2017
Journal: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 
Number: 468
Issue: 2
First Page: 1398
Abstract: We perform a set of general relativistic, radiative, magneto-hydrodynamical simulations (GR-RMHD) to study the transition from radiatively inefficient to efficient state of accretion on a non-rotating black hole. We study ion to electron temperature ratios ranging from T_i/T_e = 10 to 100, and simulate flows corresponding to accretion rates as low as 10^{-6}\dot{M}_Edd, and as high as 10^{-2}\dot{M}_Edd. We have found that the radiative output of accretion flows increases with accretion rate, and that the transition occurs earlier for hotter electrons (lower TI/Te ratio). At the same time, the mechanical efficiency hardly changes and accounts to ≈3 per cent of the accreted rest mass energy flux, even at the highest simulated accretion rates. This is particularly important for the mechanical active galactic nuclei (AGN) feedback regulating massive galaxies, groups and clusters. Comparison with recent observations of radiative and mechanical AGN luminosities suggests that the ion to electron temperature ratio in the inner, collisionless accretion flow should fall within 10 < T_i/T_e < 30, I.e. the electron temperature should be several percent of the ion temperature.
URI: http://hdl.handle.net/20.500.12386/29283
URL: https://academic.oup.com/mnras/article/468/2/1398/3059991
ISSN: 0035-8711
DOI: 10.1093/mnras/stx543
Bibcode ADS: 2017MNRAS.468.1398S
Fulltext: open
Appears in Collections:1.01 Articoli in rivista

Files in This Item:
File Description SizeFormat 
stx543.pdfPdf editoriale778.23 kBAdobe PDFView/Open
Show full item record

Page view(s)

5
checked on Jan 16, 2021

Download(s)

3
checked on Jan 16, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are published in Open Access, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects

Informazioni e guide per autori

https://openaccess-info.inaf.it: tutte le informazioni sull'accesso aperto in INAF

Come si inserisce un prodotto: le guide a OA@INAF

La Policy INAF sull'accesso aperto

Documenti e modelli scaricabili

Feedback
Built with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE