Skip navigation
  • INAF logo
  • Home
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects
  • Explore by
    • Research outputs
    • Researchers
    • Organization units
    • Projects
  • Login:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
  • Italian
  • English

  1. OA@INAF
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12386/29301
Title: Characterizing young protostellar disks with the CALYPSO IRAM-PdBI survey: large Class 0 disks are rare
Authors: Maury, A. J.
André, Ph.
Testi, L.
Maret, S.
Belloche, A.
Hennebelle, P.
Cabrit, S.
CODELLA, CLAUDIO 
Gueth, F.
PODIO, LINDA 
Anderl, S.
Bacmann, A.
Bontemps, S.
Gaudel, M.
Ladjelate, B.
Lefèvre, C.
Tabone, B.
Lefloch, B.
Issue Date: 2019
Journal: ASTRONOMY & ASTROPHYSICS 
Number: 621
First Page: A76
Abstract: Context. Understanding the formation mechanisms of protoplanetary disks and multiple systems and also their pristine properties are key questions for modern astrophysics. The properties of the youngest disks, embedded in rotating infalling protostellar envelopes, have largely remained unconstrained up to now. <BR /> Aims: We aim to observe the youngest protostars with a spatial resolution that is high enough to resolve and characterize the progenitors of protoplanetary disks. This can only be achieved using submillimeter and millimeter interferometric facilities. In the framework of the IRAM Plateau de Bure Interferometer survey CALYPSO, we have obtained subarcsecond observations of the dust continuum emission at 231 and 94 GHz for a sample of 16 solar-type Class 0 protostars. <BR /> Methods: In an attempt to identify disk-like structures embedded at small scales in the protostellar envelopes, we modeled the dust continuum emission visibility profiles using Plummer-like envelope models and envelope models that include additional Gaussian disk-like components. <BR /> Results: Our analysis shows that in the CALYPSO sample, 11 of the 16 Class 0 protostars are better reproduced by models including a disk-like dust continuum component contributing to the flux at small scales, but less than 25% of these candidate protostellar disks are resolved at radii >60 au. Including all available literature constraints on Class 0 disks at subarcsecond scales, we show that our results are representative: most (>72% in a sample of 26 protostars) Class 0 protostellar disks are small and emerge only at radii <60 au. We find a multiplicity fraction of the CALYPSO protostars ≲57% ± 10% at the scales 100-5000 au, which generally agrees with the multiplicity properties of Class I protostars at similar scales. <BR /> Conclusions: We compare our observational constraints on the disk size distribution in Class 0 protostars to the typical disk properties from protostellar formation models. If Class 0 protostars contain similar rotational energy as is currently estimated for prestellar cores, then hydrodynamical models of protostellar collapse systematically predict a high occurrence of large disks. Our observations suggest that these are rarely observed, however. Because they reduce the centrifugal radius and produce a disk size distribution that peaks at radii <100 au during the main accretion phase, magnetized models of rotating protostellar collapse are favored by our observations. <P />Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).The CALYPSO calibrated visibility tables and maps are publicly available at <A href="http://www.iram-institute.org/EN/content-page-317-7-158-240-317-0.html">http://www.iram-institute.org/EN/content-page-317-7-158-240-317-0.html</A>
URI: http://hdl.handle.net/20.500.12386/29301
URL: https://www.aanda.org/articles/aa/pdf/2019/01/aa33537-18.pdf
ISSN: 0004-6361
DOI: 10.1051/0004-6361/201833537
Bibcode ADS: 2019A&A...621A..76M
Fulltext: open
Appears in Collections:1.01 Articoli in rivista

Files in This Item:
File Description SizeFormat 
aa33537-18.pdfpdf editoriale6.2 MBAdobe PDFView/Open
Show full item record

Page view(s)

3
checked on Jan 19, 2021

Download(s)

1
checked on Jan 19, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are published in Open Access, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects

Informazioni e guide per autori

https://openaccess-info.inaf.it: tutte le informazioni sull'accesso aperto in INAF

Come si inserisce un prodotto: le guide a OA@INAF

La Policy INAF sull'accesso aperto

Documenti e modelli scaricabili

Feedback
Built with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE