Skip navigation
  • INAF logo
  • Home
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects
  • Explore by
    • Research outputs
    • Researchers
    • Organization units
    • Projects
  • Login:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
  • Italian
  • English

  1. OA@INAF
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12386/29339
Title: A Constrained Transport Method for the Solution of the Resistive Relativistic MHD Equations
Authors: A. Mignone
G. Mattia
BODO, Gianluigi 
L. Del Zanna
Issue Date: 2019
Journal: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 
Number: 486
Issue: 3
First Page: 4252
Abstract: We describe a novel Godunov-type numerical method for solving the equations of resistive relativistic magnetohydrodynamics. In the proposed approach, the spatial components of both magnetic and electric fields are located at zone interfaces and are evolved using the constrained transport formalism. Direct application of Stokes' theorem to Faraday's and Ampere's laws ensures that the resulting discretization is divergence-free for the magnetic field and charge-conserving for the electric field. Hydrodynamic variables retain, instead, the usual zone-centred representation commonly adopted in finite-volume schemes. Temporal discretization is based on Runge-Kutta implicit-explicit (IMEX) schemes in order to resolve the temporal scale disparity introduced by the stiff source term in Ampere's law. The implicit step is accomplished by means of an improved and more efficient Newton-Broyden multidimensional root-finding algorithm. The explicit step relies on a multidimensional Riemann solver to compute the line-averaged electric and magnetic fields at zone edges and it employs a one-dimensional Riemann solver at zone interfaces to update zone-centred hydrodynamic quantities. For the latter, we introduce a five-wave solver based on the frozen limit of the relaxation system whereby the solution to the Riemann problem can be decomposed into an outer Maxwell solver and an inner hydrodynamic solver. A number of numerical benchmarks demonstrate that our method is superior in stability and robustness to the more popular charge-conserving divergence cleaning approach where both primary electric and magnetic fields are zone-centered. In addition, the employment of a less diffusive Riemann solver noticeably improves the accuracy of the computations.
URI: http://hdl.handle.net/20.500.12386/29339
URL: https://academic.oup.com/mnras/article/486/3/4252/5479252
http://arxiv.org/abs/1904.01530v1
ISSN: 0035-8711
DOI: 10.1093/mnras/stz1015
Fulltext: open
Appears in Collections:1.01 Articoli in rivista

Files in This Item:
File Description SizeFormat 
paper.pdfpreprint3.14 MBAdobe PDFView/Open
stz1015.pdfpdf editoriale11.12 MBAdobe PDFView/Open
Show full item record

Page view(s)

5
checked on Jan 22, 2021

Download(s)

2
checked on Jan 22, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are published in Open Access, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects

Informazioni e guide per autori

https://openaccess-info.inaf.it: tutte le informazioni sull'accesso aperto in INAF

Come si inserisce un prodotto: le guide a OA@INAF

La Policy INAF sull'accesso aperto

Documenti e modelli scaricabili

Feedback
Built with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE