Skip navigation
  • INAF logo
  • Home
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects
  • Explore by
    • Research outputs
    • Researchers
    • Organization units
    • Projects
  • Login:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
  • Italian
  • English

  1. OA@INAF
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12386/29426
Title: Why are some galaxy clusters underluminous? The very low concentration of the CL2015 mass profile
Authors: ANDREON, Stefano 
MORETTI, Alberto 
TRINCHIERI, Ginevra 
C. H. Ishwara-Chandra
Issue Date: 2019
Journal: ASTRONOMY & ASTROPHYSICS 
Number: 630
First Page: A78
Abstract: Our knowledge of the variety of galaxy clusters has been increasing in the last few years thanks to our progress in understanding the severity of selection effects on samples. To understand the reason for the observed variety, we study CL2015, a cluster easily missed in X-ray selected observational samples. Its core-excised X-ray luminosity is low for its mass M500, well below the mean relation for an X-ray selected sample, but only ~1.5 sigma below that derived for an X-ray unbiased sample. We derived thermodynamic profiles and hydrostatic masses with the acquired deep Swift X-ray data, and we used archival Einstein, Planck, and SDSS data to derive additional measurements, such as integrated Compton parameter, total mass, and stellar mass. The pressure and the electron density profiles of CL2015 are systematically outside the +/- 2 sigma range of the universal profiles; in particular the electron density profile is even lower than the one derived from Planck-selected clusters. CL2015 also turns out to be fairly different in the X-ray luminosity versus integrated pressure scaling compared to an X-ray selected sample, but it is a normal object in terms of stellar mass fraction. CL2015's hydrostatic mass profile, by itself or when is considered together with dynamical masses, shows that the cluster has an unusual low concentration and an unusual sparsity compared to clusters in X-ray selected samples. The different behavior of CL2015 is caused by its low concentration. When concentration differences are accounted for, the properties of CL2015 become consistent with comparison samples. CL2015 is perhaps the first known cluster with a remarkably low mass concentration for which high quality X-ray data exist. Objects similar to CL2015 fail to enter observational X-ray selected samples because of their low X-ray luminosity relative to their mass.
URI: http://hdl.handle.net/20.500.12386/29426
URL: http://arxiv.org/abs/1909.11491v1
https://www.aanda.org/articles/aa/full_html/2019/10/aa35702-19/aa35702-19.html
ISSN: 0004-6361
DOI: 10.1051/0004-6361/201935702
Fulltext: open
Appears in Collections:1.01 Articoli in rivista

Files in This Item:
File Description SizeFormat 
2019_low_conc.pdfpdf editoriale1.13 MBAdobe PDFView/Open
Show full item record

Page view(s)

3
checked on Jan 16, 2021

Download(s)

1
checked on Jan 16, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are published in Open Access, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects

Informazioni e guide per autori

https://openaccess-info.inaf.it: tutte le informazioni sull'accesso aperto in INAF

Come si inserisce un prodotto: le guide a OA@INAF

La Policy INAF sull'accesso aperto

Documenti e modelli scaricabili

Feedback
Built with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE