Skip navigation
  • INAF logo
  • Home
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects
  • Explore by
    • Research outputs
    • Researchers
    • Organization units
    • Projects
  • Login:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
  • Italian
  • English

  1. OA@INAF
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12386/29462
Title: Hyper hemispheric lens applications in small and micro satellites
Authors: PERNECHELE, Claudio 
Dionisio, Cesare
MUNARI, MATTEO
Opromolla, Roberto
Rufino, Giancarlo
Fasano, Giancarmine
Grassi, Michele
PASTORE, Serena 
Issue Date: 2018
Journal: ADVANCES IN SPACE RESEARCH 
Number: 62
Issue: 12
First Page: 3449
Abstract: As well known, micro and nanosatellites are being proposed for a variety of space missions, due to the advantages offered in terms of flexibility, cost and development time-scales. They also allow the development of space missions based on distributed architectures, composed of a number of small platforms in coordinated flight. However, technological advancements are still needed to make micro and nanosatellite competitive with respect to larger platforms. In this paper, we explore the potentiality offered by hyper hemispheric lens for the development of miniaturized and multi-function sensors for use on board of micro satellites. Hyper hemispheric lens belong to the ultra-wide field-of-view optical objectives. Here a novel optics of this category is presented. Its field of view is 360° in azimuth (panoramic capabilities) and 135° for the off-boresight angle (hyper-hemispheric field). With such capabilities the lens may be exploited as a very-large field-of-view optics where moving parts can be avoided. This is of interest to space applications, in which devices with any moving part, representing a possible point of failure, shall be avoided or reduced to the minimum. A hyper hemispheric lens may, then, be adopted for electro optical devices in space satellite subsystems, such as star-, Sun- and Earth-sensors, or for monitoring the environment surrounding the satellite in the case of on-orbit servicing or active debris removal operations. Weight and cost budgets for small and micro satellites are also important parameters to determine their success. Hyper hemispheric lens may be kept quite compact in dimension and the need of a single imaging detector, for a so large field of view, strongly reduces costs. In this paper, we explore possible applications of a multi-purpose space device based on a hyper hemispheric lens on board of micro and nanosatellites.
URI: http://hdl.handle.net/20.500.12386/29462
URL: https://www.sciencedirect.com/science/article/pii/S0273117718301674?via%3Dihub
ISSN: 0273-1177
DOI: 10.1016/j.asr.2018.02.025
Bibcode ADS: 2018AdSpR..62.3449P
Fulltext: open
Appears in Collections:1.01 Articoli in rivista

Files in This Item:
File Description SizeFormat 
oe-24-5-5014 - Pernechele.pdfpreprint1.44 MBAdobe PDFView/Open
1-s2.0-S0273117718301674-main.pdf[Administrators only]2.29 MBAdobe PDF
Show full item record

Page view(s)

5
checked on Jan 16, 2021

Download(s)

2
checked on Jan 16, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are published in Open Access, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects

Informazioni e guide per autori

https://openaccess-info.inaf.it: tutte le informazioni sull'accesso aperto in INAF

Come si inserisce un prodotto: le guide a OA@INAF

La Policy INAF sull'accesso aperto

Documenti e modelli scaricabili

Feedback
Built with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE