Please use this identifier to cite or link to this item:
http://hdl.handle.net/20.500.12386/29537
Title: | Tests of gravitational symmetries with pulsar binary J1713+0747 | Authors: | Zhu, W. W. Desvignes, G. Wex, N. Caballero, R. N. Champion, D. J. Demorest, P. B. Ellis, J. A. Janssen, G. H. Kramer, M. Krieger, A. Lentati, L. Nice, D. J. Ransom, S. M. Stairs, I. H. Stappers, B. W. Verbiest, J. P. W. Arzoumanian, Z. Bassa, C. G. BURGAY, MARTA Cognard, I. Crowter, K. Dolch, T. Ferdman, R. D. Fonseca, E. Gonzalez, M. E. Graikou, E. Guillemot, L. Hessels, J. W. T. Jessner, A. Jones, G. Jones, M. L. Jordan, C. Karuppusamy, R. Lam, M. T. Lazaridis, K. Lazarus, P. Lee, K. J. Levin, L. Liu, K. Lyne, A. G. McKee, J. W. McLaughlin, M. A. Osłowski, S. Pennucci, T. PERRODIN, DELPHINE POSSENTI, ANDREA Sanidas, S. Shaifullah, G. Smits, R. Stovall, K. Swiggum, J. Theureau, G. TIBURZI, Caterina |
Issue Date: | 2019 | Journal: | MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY | Number: | 482 | Issue: | 3 | First Page: | 3249 | Abstract: | Symmetries play a fundamental role in modern theories of gravity. The strong equivalence principle (SEP) constitutes a collection of gravitational symmetries which are all implemented by general relativity. Alternative theories, however, are generally expected to violate some aspects of SEP. We test three aspects of SEP using observed change rates in the orbital period and eccentricity of binary pulsar J1713+0747: (1) the gravitational constant's constancy as part of locational invariance of gravitation; (2) the universality of free fall (UFF) for strongly self-gravitating bodies; (3) the post-Newtonian parameter \hat{α }_3 in gravitational Lorentz invariance. Based on the pulsar timing result of the combined data set from the North American Nanohertz Gravitational Observatory and the European Pulsar Timing Array, we find \dot{G}/G = (-0.1 ± 0.9) × 10^{-12} yr^{-1}, which is weaker than Solar system limits, but applies for strongly self-gravitating objects. Furthermore, we obtain an improved test for a UFF violation by a strongly self-gravitating mass falling in the gravitational field of our Galaxy, with a limit of |∆| < 0.002 (95 per cent C.L.). Finally, we derive an improved limit on the self-acceleration of a gravitationally bound rotating body, to a preferred reference frame in the Universe, with -3× 10^{-20} < \hat{α }_3 < 4× 10^{-20} (95 per cent C.L.). These results are based on direct UFF and \hat{α }_3 tests using pulsar binaries, and they overcome various limitations of previous tests of this kind. | URI: | http://hdl.handle.net/20.500.12386/29537 | URL: | https://academic.oup.com/mnras/article/482/3/3249/5145854 | ISSN: | 0035-8711 | DOI: | 10.1093/mnras/sty2905 | Bibcode ADS: | 2019MNRAS.482.3249Z | Fulltext: | open |
Appears in Collections: | 1.01 Articoli in rivista |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Zhu2019.pdf | PDF editoriale | 836.2 kB | Adobe PDF | View/Open |
Page view(s)
76
checked on Apr 19, 2025
Download(s)
30
checked on Apr 19, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are published in Open Access, unless otherwise indicated.