Skip navigation
  • INAF logo
  • Home
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects
  • Explore by
    • Research outputs
    • Researchers
    • Organization units
    • Projects
  • Login:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
  • Italian
  • English

  1. OA@INAF
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12386/29576
Title: Nitrogen and oxygen abundances in the Local Universe
Authors: CARDONE, Vincenzo Fabrizio 
BELFIORE, FRANCESCO MICHEL CONCETTO 
Maiolino, R.
Matteucci, F.
VENTURA, Paolo 
Issue Date: 2016
Journal: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 
Number: 458
Issue: 4
First Page: 3466
Abstract: We present chemical evolution models aimed at reproducing the observed (N/O) versus (O/H) abundance pattern of star-forming galaxies in the Local Universe. We derive gas-phase abundances from Sloan Digital Sky Survey (SDSS) spectroscopy and a complementary sample of low-metallicity dwarf galaxies, making use of a consistent set of abundance calibrations. This collection of data clearly confirms the existence of a plateau in the (N/O) ratio at very low metallicity, followed by an increase of this ratio up to high values as the metallicity increases. This trend can be interpreted as due to two main sources of nitrogen in galaxies: (I) massive stars, which produce small amounts of pure primary nitrogen and are responsible for the (N/O) ratio in the low-metallicity plateau; (II) low- and intermediate-mass stars, which produce both secondary and primary nitrogen and enrich the interstellar medium with a time delay relative to massive stars, and cause the increase of the (N/O) ratio. We find that the length of the low-metallicity plateau is almost solely determined by the star formation efficiency, which regulates the rate of oxygen production by massive stars. We show that, to reproduce the high observed (N/O) ratios at high (O/H), as well as the right slope of the (N/O) versus (O/H) curve, a differential galactic wind - where oxygen is assumed to be lost more easily than nitrogen - is necessary. No existing set of stellar yields can reproduce the observed trend without assuming differential galactic winds. Finally, considering the current best set of stellar yields, a bottom-heavy initial mass function is favoured to reproduce the data.
URI: http://hdl.handle.net/20.500.12386/29576
URL: https://academic.oup.com/mnras/article/458/4/3466/2613822
ISSN: 0035-8711
DOI: 10.1093/mnras/stw532
Bibcode ADS: 2016MNRAS.458.3466V
Fulltext: open
Appears in Collections:1.01 Articoli in rivista

Files in This Item:
File Description SizeFormat 
stw532.pdfPDF editoriale1.92 MBAdobe PDFView/Open
Show full item record

Page view(s)

3
checked on Jan 19, 2021

Download(s)

1
checked on Jan 19, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are published in Open Access, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects

Informazioni e guide per autori

https://openaccess-info.inaf.it: tutte le informazioni sull'accesso aperto in INAF

Come si inserisce un prodotto: le guide a OA@INAF

La Policy INAF sull'accesso aperto

Documenti e modelli scaricabili

Feedback
Built with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE