Removing krypton from xenon by cryogenic distillation to the ppq level
Date Issued
2017
Author(s)
Aprile, E.
•
Aalbers, J.
•
Agostini, F.
•
Alfonsi, M.
•
Amaro, F. D.
•
Anthony, M.
•
Arneodo, F.
•
Barrow, P.
•
Baudis, L.
•
Bauermeister, B.
•
Benabderrahmane, M. L.
•
Berger, T.
•
Breur, P. A.
•
Brown, A.
•
Brown, E.
•
Bruenner, S.
•
•
Budnik, R.
•
Bütikofer, L.
•
Calvén, J.
•
Cardoso, J. M. R.
•
Cervantes, M.
•
Cichon, D.
•
Coderre, D.
•
Colijn, A. P.
•
Conrad, J.
•
Cussonneau, J. P.
•
Decowski, M. P.
•
de Perio, P.
•
Di Gangi, P.
•
Di Giovanni, A.
•
Diglio, S.
•
Duchovni, E.
•
Eurin, G.
•
Fei, J.
•
Ferella, A. D.
•
Fieguth, A.
•
Franco, D.
•
•
Gallo Rosso, A.
•
Galloway, M.
•
Gao, F.
•
Garbini, M.
•
Geis, C.
•
Goetzke, L. W.
•
Grandi, L.
•
Greene, Z.
•
Grignon, C.
•
Hasterok, C.
•
Hogenbirk, E.
•
Huhmann, C.
•
Itay, R.
•
Kaminsky, B.
•
Kessler, G.
•
Kish, A.
•
Landsman, H.
•
Lang, R. F.
•
Lellouch, D.
•
Levinson, L.
•
Calloch, M. Le
•
Lin, Q.
•
Lindemann, S.
•
Lindner, M.
•
Lopes, J. A. M.
•
Manfredini, A.
•
Maris, I.
•
Undagoitia, T. Marrodán
•
Masbou, J.
•
Massoli, F. V.
•
Masson, D.
•
Mayani, D.
•
Meng, Y.
•
Messina, M.
•
Micheneau, K.
•
Miguez, B.
•
•
Murra, M.
•
Naganoma, J.
•
Ni, K.
•
Oberlack, U.
•
Orrigo, S. E. A.
•
Pakarha, P.
•
Pelssers, B.
•
Persiani, R.
•
Piastra, F.
•
Pienaar, J.
•
Piro, M. -C.
•
Pizzella, V.
•
Plante, G.
•
Priel, N.
•
Rauch, L.
•
Reichard, S.
•
Reuter, C.
•
Rizzo, A.
•
Rosendahl, S.
•
Rupp, N.
•
Saldanha, R.
•
Santos, J. M. F. dos
•
Sartorelli, G.
•
Scheibelhut, M.
•
Schindler, S.
•
Schreiner, J.
•
Schumann, M.
•
Lavina, L. Scotto
•
Selvi, M.
•
Shagin, P.
•
Shockley, E.
•
Silva, M.
•
Simgen, H.
•
Sivers, M. v.
•
Stein, A.
•
Thers, D.
•
Tiseni, A.
•
•
Tunnell, C.
•
Upole, N.
•
Wang, H.
•
Wei, Y.
•
Weinheimer, C.
•
Wulf, J.
•
Ye, J.
•
Zhang, Y.
•
Cristescu, I.
Abstract
The XENON1T experiment aims for the direct detection of dark matter in a detector filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the β -emitter ^{85}Kr which is present in the xenon. For XENON1T a concentration of natural krypton in xenon ^{nat}Kr/Xe < 200 ppq (parts per quadrillion, 1 ppq =10^{-15} mol/mol) is required. In this work, the design, construction and test of a novel cryogenic distillation column using the common McCabe-Thiele approach is described. The system demonstrated a krypton reduction factor of 6.4\cdot 10^5 with thermodynamic stability at process speeds above 3 kg/h. The resulting concentration of ^{nat}Kr/Xe<26 ppq is the lowest ever achieved, almost one order of magnitude below the requirements for XENON1T and even sufficient for future dark matter experiments using liquid xenon, such as XENONnT and DARWIN.
Volume
77
Issue
5
Start page
275
Issn Identifier
1434-6044
Ads BibCode
2017EPJC...77..275A
Rights
open.access
File(s)![Thumbnail Image]()
Loading...
Name
epjc_2017_77.pdf
Description
Pdf editoriale
Size
2.2 MB
Format
Adobe PDF
Checksum (MD5)
f36b1a2e18b2e6c94700c2f3467fe29c