Exploring cosmic origins with CORE: Mitigation of systematic effects
Date Issued
2018
Author(s)
Natoli, P.
•
Ashdown, M.
•
Banerji, R.
•
Borrill, J.
•
Buzzelli, A.
•
de Gasperis, G.
•
Delabrouille, J.
•
Hivon, E.
•
Molinari, D.
•
Patanchon, G.
•
Polastri, L.
•
•
Piat, M.
•
Pisano, G.
•
Pollo, A.
•
Poulin, V.
•
Quartin, M.
•
Remazeilles, M.
•
Roman, M.
•
Rossi, G.
•
Rubino-Martin, J. -A.
•
Tomasi, M.
•
•
Signorelli, G.
•
Tartari, A.
•
Tramonte, D.
•
Trappe, N.
•
•
Tucker, C.
•
Valiviita, J.
•
Van de Weijgaert, R.
•
van Tent, B.
•
Bouchet, F. R.
•
Vennin, V.
•
Vielva, P.
•
Vittorio, N.
•
Wallis, C.
•
Young, K.
•
Zannoni, M.
•
Henrot-Versillé, S.
•
Hoang, D. T.
•
Keskitalo, R.
•
Kiiveri, K.
•
Kisner, T.
•
Lindholm, V.
•
McCarthy, D.
•
Piacentini, F.
•
Perdereau, O.
•
Polenta, G.
•
Tristram, M.
•
Achucarro, A.
•
Ade, P.
•
Allison, R.
•
Baccigalupi, C.
•
Ballardini, M.
•
Banday, A. J.
•
Bartlett, J.
•
Bartolo, N.
•
Basak, S.
•
Baumann, D.
•
Bersanelli, M.
•
Bonaldi, A.
•
•
Boulanger, F.
•
Brinckmann, T.
•
Bucher, M.
•
•
Cai, Z. -Y.
•
Calvo, M.
•
Carvalho, C. -S.
•
Castellano, M. G.
•
Challinor, A.
•
Chluba, J.
•
Clesse, S.
•
Colantoni, I.
•
Coppolecchia, A.
•
Crook, M.
•
D'Alessandro, G.
•
de Bernardis, P.
•
De Zotti, G.
•
Di Valentino, E.
•
Diego, J. -M.
•
Errard, J.
•
Feeney, S.
•
Fernandez-Cobos, R.
•
•
Forastieri, F.
•
Galli, S.
•
Genova-Santos, R.
•
Gerbino, M.
•
González-Nuevo, J.
•
Grandis, S.
•
Greenslade, J.
•
•
Hagstotz, S.
•
Hanany, S.
•
Handley, W.
•
Hernandez-Monteagudo, C.
•
Hervías-Caimapo, C.
•
Hills, M.
•
Keihänen, E.
•
Kitching, T.
•
Kunz, M.
•
Kurki-Suonio, H.
•
Lamagna, L.
•
Lasenby, A.
•
•
Lesgourgues, J.
•
Lewis, A.
•
Liguori, M.
•
López-Caniego, M.
•
Luzzi, G.
•
Maffei, B.
•
Mandolesi, N.
•
Martinez-González, E.
•
Martins, C. J. A. P.
•
Masi, S.
•
Matarrese, S.
•
Melchiorri, A.
•
Melin, J. -B.
•
Migliaccio, M.
•
Monfardini, A.
•
Negrello, M.
•
Notari, A.
•
Pagano, L.
•
Paiella, A.
Abstract
We present an analysis of the main systematic effects that could impact the measurement of CMB polarization with the proposed CORE space mission. We employ timeline-to-map simulations to verify that the CORE instrumental set-up and scanning strategy allow us to measure sky polarization to a level of accuracy adequate to the mission science goals. We also show how the CORE observations can be processed to mitigate the level of contamination by potentially worrying systematics, including intensity-to-polarization leakage due to bandpass mismatch, asymmetric main beams, pointing errors and correlated noise. We use analysis techniques that are well validated on data from current missions such as Planck to demonstrate how the residual contamination of the measurements by these effects can be brought to a level low enough not to hamper the scientific capability of the mission, nor significantly increase the overall error budget. We also present a prototype of the CORE photometric calibration pipeline, based on that used for Planck, and discuss its robustness to systematics, showing how CORE can achieve its calibration requirements. While a fine-grained assessment of the impact of systematics requires a level of knowledge of the system that can only be achieved in a future study phase, the analysis presented here strongly suggests that the main areas of concern for the CORE mission can be addressed using existing knowledge, techniques and algorithms.
Volume
2018
Issue
4
Start page
022
Issn Identifier
1475-7516
Ads BibCode
2018JCAP...04..022N
Rights
open.access
File(s)![Thumbnail Image]()
![Thumbnail Image]()
Loading...
Name
arxiv.pdf
Description
postprint
Size
13.47 MB
Format
Adobe PDF
Checksum (MD5)
d1a295f6893d6d3317668f50a3a8bb7d
Loading...
Name
Natoli_2018_JCAP_2018_022-compr.pdf
Description
[Administrators only]
Size
3.54 MB
Format
Adobe PDF
Checksum (MD5)
c611c76d2edfdfa38683b9c1ecb28b1b