Skip navigation
  • INAF logo
  • Home
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects
  • Explore by
    • Research outputs
    • Researchers
    • Organization units
    • Projects
  • Login:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
  • Italian
  • English

  1. OA@INAF
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12386/30398
Title: Characterizing the radio emission from the binary galaxy cluster merger Abell 2146
Authors: Hoang, D. N.
Shimwell, T. W.
van Weeren, R. J.
Röttgering, H. J. A.
Botteon, A.
BRUNETTI, GIANFRANCO 
Brüggen, M.
CASSANO, Rossella 
Hlavacek-Larrondo, J.
Gendron-Marsolais, M. -L.
Stroe, A.
Issue Date: 2019
Journal: ASTRONOMY & ASTROPHYSICS 
Number: 622
First Page: A21
Abstract: Collisions of galaxy clusters generate shocks and turbulence in the intra-cluster medium (ICM). The presence of relativistic particles and magnetic fields is inferred through the detection of extended synchrotron radio sources such as haloes and relics and implies that merger shocks and turbulence are capable of (re-)accelerating particles to relativistic energies. However, the precise relationship between merger shocks, turbulence, and extended radio emission is still unclear. Studies of the most simple binary cluster mergers are important to help understand the particle acceleration in the ICM. Our main aim is to study the properties of the extended radio emission and particle acceleration mechanism(s) associated with the generation of relativistic particles in the ICM. We measure the low-frequency radio emission from the merging galaxy cluster Abell 2146 with LOFAR at 144 MHz. We characterize the spectral properties of the radio emission by combining these data with data from archival GMRT at 238 MHz and 612 MHz and VLA at 1.5 GHz. We observe extended radio emission at 144 MHz behind the NW and SE shocks. Across the NW extended source, the spectral index steepens from $-1.06\pm0.06$ to $-1.29\pm0.09$ in the direction of the cluster centre. This spectral behaviour suggests that a relic is associated with the NW upstream shock. The precise nature of the SE extended emission is unclear. It may be a radio halo bounded by a shock or a superposition of a relic and halo. At 144 MHz, we detect a faint emission that was not seen with high-frequency observations, implying a steep ($\alpha<-1.3$) spectrum nature of the bridge emission. Our results imply that the extended radio emission in Abell 2146 is probably associated with shocks and turbulence during cluster merger. The relativistic electrons in the NW and SE may originate from fossil plasma and thermal electrons, respectively.
URI: http://hdl.handle.net/20.500.12386/30398
URL: http://arxiv.org/abs/1811.09708v1
https://www.aanda.org/articles/aa/full_html/2019/02/aa34025-18/aa34025-18.html
ISSN: 0004-6361
DOI: 10.1051/0004-6361/201834025
Bibcode ADS: 2019A&A...622A..21H
Fulltext: open
Appears in Collections:1.01 Articoli in rivista

Files in This Item:
File Description SizeFormat
aa34025-18.pdfPdf editoriale4.16 MBAdobe PDFView/Open
Show full item record

Page view(s)

38
checked on Apr 1, 2023

Download(s)

7
checked on Apr 1, 2023

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are published in Open Access, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects

Informazioni e guide per autori

https://openaccess-info.inaf.it: tutte le informazioni sull'accesso aperto in INAF

Come si inserisce un prodotto: le guide a OA@INAF

La Policy INAF sull'accesso aperto

Documenti e modelli scaricabili

Feedback
Built with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE