Skip navigation
  • INAF logo
  • Home
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects
  • Explore by
    • Research outputs
    • Researchers
    • Organization units
    • Projects
  • Login:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
  • Italian
  • English

  1. OA@INAF
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12386/30474
Title: Turbulence and vorticity in Galaxy clusters generated by structure formation
Authors: VAZZA, FRANCO 
Jones, T. W.
Brüggen, M.
BRUNETTI, GIANFRANCO 
Gheller, C.
Porter, D.
Ryu, D.
Issue Date: 2017
Journal: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 
Number: 464
Issue: 1
First Page: 210
Abstract: Turbulence is a key ingredient for the evolution of the intracluster medium, whose properties can be predicted with high-resolution numerical simulations. We present initial results on the generation of solenoidal and compressive turbulence in the intracluster medium during the formation of a small-size cluster using highly resolved, non-radiative cosmological simulations, with a refined monitoring in time. In this first of a series of papers, we closely look at one simulated cluster whose formation was distinguished by a merger around z ∼ 0.3. We separate laminar gas motions, turbulence and shocks with dedicated filtering strategies and distinguish the solenoidal and compressive components of the gas flows using Hodge-Helmholtz decomposition. Solenoidal turbulence dominates the dissipation of turbulent motions (∼95 per cent) in the central cluster volume at all epochs. The dissipation via compressive modes is found to be more important (∼30 per cent of the total) only at large radii (≥0.5r<SUB>vir</SUB>) and close to merger events. We show that enstrophy (vorticity squared) is good proxy of solenoidal turbulence. All terms ruling the evolution of enstrophy (I.e. baroclinic, compressive, stretching and advective terms) are found to be significant, but in amounts that vary with time and location. Two important trends for the growth of enstrophy in our simulation are identified: first, enstrophy is continuously accreted into the cluster from the outside, and most of that accreted enstrophy is generated near the outer accretion shocks by baroclinic and compressive processes. Secondly, in the cluster interior vortex, stretching is dominant, although the other terms also contribute substantially.
URI: http://hdl.handle.net/20.500.12386/30474
URL: http://arxiv.org/abs/1609.03558v1
https://academic.oup.com/mnras/article/464/1/210/2194695
ISSN: 0035-8711
DOI: 10.1093/mnras/stw2351
Bibcode ADS: 2017MNRAS.464..210V
Fulltext: open
Appears in Collections:1.01 Articoli in rivista

Files in This Item:
File Description SizeFormat
stw2351.pdfPdf editoriale18 MBAdobe PDFView/Open
Show full item record

Page view(s)

41
checked on Mar 23, 2023

Download(s)

11
checked on Mar 23, 2023

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are published in Open Access, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects

Informazioni e guide per autori

https://openaccess-info.inaf.it: tutte le informazioni sull'accesso aperto in INAF

Come si inserisce un prodotto: le guide a OA@INAF

La Policy INAF sull'accesso aperto

Documenti e modelli scaricabili

Feedback
Built with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE