Skip navigation
  • INAF logo
  • Home
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects
  • Explore by
    • Research outputs
    • Researchers
    • Organization units
    • Projects
  • Login:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
  • Italian
  • English

  1. OA@INAF
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12386/31237
Title: Euclid preparation. X. The Euclid photometric-redshift challenge
Authors: Euclid Collaboration
Desprez, G.
Paltani, S.
Coupon, J.
Almosallam, I.
Alvarez-Ayllon, A.
Amaro, V.
BRESCIA, Massimo 
Brodwin, M.
CAVUOTI, STEFANO 
De Vicente-Albendea, J.
Kilbinger, M.
Kirkpatrick, C. C.
Kitching, T. D.
Kohley, R.
Kubik, B.
Kunz, M.
Kurki-Suonio, H.
LIGORI, Sebastiano 
Lilje, P. B.
Lloro, I.
Fotopoulou, S.
Maino, D.
MAIORANO, Elisabetta 
Marggraf, O.
Markovic, K.
Martinet, N.
Marulli, F.
Massey, R.
Maturi, M.
Mauri, N.
Maurogordato, S.
Hatfield, P. W.
Medinaceli, E.
Mei, S.
MENEGHETTI, MASSIMO 
Metcalf, R. Benton
Meylan, G.
Moresco, M.
Moscardini, L.
Munari, Emiliano 
Niemi, S.
Padilla, C.
Hartley, W. G.
Pasian, F.
Patrizii, L.
Pettorino, V.
Pires, S.
Polenta, G.
Poncet, M.
Popa, L.
Potter, D.
POZZETTI, Lucia 
Raison, F.
Ilbert, O.
Renzi, A.
Rhodes, J.
RICCIO, GIUSEPPE 
Rossetti, E.
Saglia, R.
Sapone, D.
Schneider, P.
Scottez, V.
Secroun, A.
Serrano, S.
Jarvis, M. J.
Sirignano, C.
Sirri, G.
Stanco, L.
Stern, D.
Sureau, F.
Tallada Crespí, P.
TAVAGNACCO , DANIELE 
Taylor, A. N.
Tenti, M.
Tereno, I.
Longo, G.
Toledo-Moreo, R.
Torradeflot, F.
VALENZIANO, LUCA 
Valiviita, J.
Vassallo, T.
VIEL, MATTEO 
Wang, Y.
Welikala, N.
Whittaker, L.
ZACCHEI, Andrea 
Rau, M. M.
Zamorani, G.
Zoubian, J.
ZUCCA, Elena 
Saha, R.
Speagle, J. S.
Tramacere, A.
CASTELLANO, MARCO 
Dubath, F.
Galametz, A.
Kuemmel, M.
Laigle, C.
MERLIN, Emiliano 
Mohr, J. J.
PILO, Stefano 
Salvato, M.
ANDREON, Stefano 
AURICCHIO, NATALIA 
Baccigalupi, C.
Balaguera-Antolínez, A.
Baldi, M.
BARDELLI, Sandro 
Bender, R.
BIVIANO, ANDREA 
Bodendorf, C.
BONINO, Donata 
Bozzo, E.
Branchini, Enzo Franco 
Brinchmann, J.
BURIGANA, CARLO 
Cabanac, R.
Camera, S.
Capobianco, Vito 
CAPPI, Alberto 
CARBONE, Carmelita 
Carretero, J.
Carvalho, C. S.
Casas, R.
Casas, S.
Castander, F. J.
Castignani, G.
Cimatti, A.
Cledassou, R.
Colodro-Conde, C.
Congedo, G.
Conselice, C. J.
Conversi, L.
Copin, Y.
CORCIONE, Leonardo 
Courtois, H. M.
Cuby, J. -G.
Da Silva, A.
de la Torre, S.
Degaudenzi, H.
Di Ferdinando, D.
Douspis, M.
Duncan, C. A. J.
Dupac, X.
Ealet, A.
Fabbian, G.
Fabricius, M.
Farrens, S.
Ferreira, P. G.
FINELLI, FABIO 
Fosalba, P.
Fourmanoit, N.
FRAILIS, Marco 
FRANCESCHI, ENRICO 
FUMANA, Marco 
GALEOTTA, Samuele 
GARILLI, BIANCA MARIA ROSA 
Gillard, W.
Gillis, B.
GIOCOLI, Carlo 
Gozaliasl, G.
Graciá-Carpio, J.
Grupp, F.
Guzzo, L.
Hailey, M.
Haugan, S. V. H.
Holmes, W.
Hormuth, F.
Humphrey, A.
Jahnke, K.
Keihanen, E.
Kermiche, S.
Issue Date: 2020
Journal: ASTRONOMY & ASTROPHYSICS 
Number: 644
First Page: A31
Abstract: Forthcoming large photometric surveys for cosmology require precise and accurate photometric redshift (photo-z) measurements for the success of their main science objectives. However, to date, no method has been able to produce photo-zs at the required accuracy using only the broad-band photometry that those surveys will provide. An assessment of the strengths and weaknesses of current methods is a crucial step in the eventual development of an approach to meet this challenge. We report on the performance of 13 photometric redshift code single value redshift estimates and redshift probability distributions (PDZs) on a common set of data, focusing particularly on the 0.2 - 2.6 redshift range that the Euclid mission will probe. We designed a challenge using emulated Euclid data drawn from three photometric surveys of the COSMOS field. The data was divided into two samples: one calibration sample for which photometry and redshifts were provided to the participants; and the validation sample, containing only the photometry to ensure a blinded test of the methods. Participants were invited to provide a redshift single value estimate and a PDZ for each source in the validation sample, along with a rejection flag that indicates the sources they consider unfit for use in cosmological analyses. The performance of each method was assessed through a set of informative metrics, using cross-matched spectroscopic and highly-accurate photometric redshifts as the ground truth. We show that the rejection criteria set by participants are efficient in removing strong outliers, that is to say sources for which the photo-z deviates by more than 0.15(1 + z) from the spectroscopic-redshift (spec-z). We also show that, while all methods are able to provide reliable single value estimates, several machine-learning methods do not manage to produce useful PDZs. We find that no machine-learning method provides good results in the regions of galaxy color-space that are sparsely populated by spectroscopic-redshifts, for example z > 1. However they generally perform better than template-fitting methods at low redshift (z < 0.7), indicating that template-fitting methods do not use all of the information contained in the photometry. We introduce metrics that quantify both photo-z precision and completeness of the samples (post-rejection), since both contribute to the final figure of merit of the science goals of the survey (e.g., cosmic shear from Euclid). Template-fitting methods provide the best results in these metrics, but we show that a combination of template-fitting results and machine-learning results with rejection criteria can outperform any individual method. On this basis, we argue that further work in identifying how to best select between machine-learning and template-fitting approaches for each individual galaxy should be pursued as a priority.
URI: http://hdl.handle.net/20.500.12386/31237
URL: https://www.aanda.org/articles/aa/abs/2020/12/aa39403-20/aa39403-20.html
ISSN: 0004-6361
DOI: 10.1051/0004-6361/202039403
Bibcode ADS: 2020A&A...644A..31E
Fulltext: open
Appears in Collections:1.01 Articoli in rivista

Files in This Item:
File Description SizeFormat
aa39403-20.pdfPDF editoriale6.35 MBAdobe PDFView/Open
Show full item record

Page view(s)

67
checked on Mar 29, 2023

Download(s)

15
checked on Mar 29, 2023

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are published in Open Access, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects

Informazioni e guide per autori

https://openaccess-info.inaf.it: tutte le informazioni sull'accesso aperto in INAF

Come si inserisce un prodotto: le guide a OA@INAF

La Policy INAF sull'accesso aperto

Documenti e modelli scaricabili

Feedback
Built with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE