Repository logo
  • English
  • Italiano
Log In
Have you forgotten your password?
  1. Home
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
  5. From clump to disc scales in W3 IRS4. A case study of the IRAM NOEMA large programme CORE
 

From clump to disc scales in W3 IRS4. A case study of the IRAM NOEMA large programme CORE

Journal
ASTRONOMY & ASTROPHYSICS  
Date Issued
2020
Author(s)
Mottram, J. C.
•
Beuther, H.
•
Ahmadi, A.
•
Klaassen, P. D.
•
BELTRAN SOROLLA, MARIA TERESA  
•
Csengeri, T.
•
Feng, S.
•
Gieser, C.
•
Henning, Th.
•
Johnston, K. G.
•
Kuiper, R.
•
Leurini, Silvia  
•
Linz, H.
•
Longmore, S. N.
•
Lumsden, S.
•
Maud, L. T.
•
MOSCADELLI, Luca  
•
Palau, A.
•
Peters, T.
•
Pudritz, R. E.
•
Ragan, S. E.
•
Sánchez-Monge, Á.
•
Semenov, D.
•
Urquhart, J. S.
•
Winters, J. M.
•
Zinnecker, H.
DOI
10.1051/0004-6361/201834152
Abstract
Context. High-mass star formation typically takes place in a crowded environment, with a higher likelihood of young forming stars affecting and being affected by their surroundings and neighbours, as well as links between different physical scales affecting the outcome. However, observational studies are often focused on either clump or disc scales exclusively.
Aims: We explore the physical and chemical links between clump and disc scales in the high-mass star formation region W3 IRS4, a region that contains a number of different evolutionary phases in the high-mass star formation process, as a case-study for what can be achieved as part of the IRAM NOrthern Extended Millimeter Array (NOEMA) large programme named CORE: "Fragmentation and disc formation in high-mass star formation".
Methods: We present 1.4 mm continuum and molecular line observations with the IRAM NOEMA interferometer and 30 m telescope, which together probe spatial scales from ~0.3-20'' (600-40 000 AU or 0.003-0.2 pc at 2 kpc, the distance to W3). As part of our analysis, we used XCLASS to constrain the temperature, column density, velocity, and line-width of the molecular emission lines.
Results: The W3 IRS4 region includes a cold filament and cold cores, a massive young stellar object (MYSO) embedded in a hot core, and a more evolved ultra-compact (UC)H II region, with some degree of interaction between all components of the region that affects their evolution. A large velocity gradient is seen in the filament, suggesting infall of material towards the hot core at a rate of 10-3-10-4 M⊙ yr-1, while the swept up gas ring in the photodissociation region around the UCH II region may be squeezing the hot core from the other side. There are no clear indications of a disc around the MYSO down to the resolution of the observations (600 AU). A total of 21 molecules are detected, with the abundances and abundance ratios indicating that many molecules were formed in the ice mantles of dust grains at cooler temperatures, below the freeze-out temperature of CO (≲35 K). This contrasts with the current bulk temperature of ~50 K, which was obtained from H2CO.
Conclusions: CORE observations allow us to comprehensively link the different structures in the W3 IRS4 region for the first time. Our results argue that the dynamics and environment around the MYSO W3 IRS4 have a significant impact on its evolution. This context would be missing if only high resolution or continuum observations were available.
Volume
636
Start page
A118
Uri
http://hdl.handle.net/20.500.12386/31468
Url
https://www.aanda.org/articles/aa/full_html/2020/04/aa34152-18/aa34152-18.html
https://api.elsevier.com/content/abstract/scopus_id/85088142409
Issn Identifier
0004-6361
Ads BibCode
2020A&A...636A.118M
Rights
open.access
File(s)
Loading...
Thumbnail Image
Name

aa34152-18-compr.pdf

Description
Pdf editoriale
Size

6.18 MB

Format

Adobe PDF

Checksum (MD5)

869252fdcbf276e6c250dbfba73b5c8b

Explore By
  • Communities and Collection
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Information and guides for authors
  • https://openaccess-info.inaf.it: all about open access in INAF
  • How to enter a product: guides to OA@INAF
  • The INAF Policy on Open Access
  • Downloadable documents and templates

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback