Imaging neutron capture cross sections: i-TED proof-of-concept and future prospects based on Machine-Learning techniques
Date Issued
2021
Author(s)
Babiano-Suárez, V.
•
Lerendegui-Marco, J.
•
Balibrea-Correa, J.
•
Caballero, L.
•
Calvo, D.
•
Ladarescu, I.
•
Real, D.
•
Domingo-Pardo, C.
•
Calviño, F.
•
Casanovas, A.
•
Tarifeño-Saldivia, A.
•
Knapova, I.
•
Kokkoris, M.
•
Kopatch, Y.
•
Krtička, M.
•
Kurtulgil, D.
•
Lederer-Woods, C.
•
Leeb, H.
•
Lonsdale, S. J.
•
Macina, D.
•
Manna, A.
•
Quesada, J. M.
•
Martinez, T.
•
Masi, A.
•
Massimi, C.
•
Mastinu, P.
•
Mastromarco, M.
•
Maugeri, E. A.
•
Mazzone, A.
•
Mendoza, E.
•
Mengoni, A.
•
Michalopoulou, V.
•
Ramos-Doval, D.
•
Milazzo, P. M.
•
Mingrone, F.
•
Moreno-Soto, J.
•
Musumarra, A.
•
Negret, A.
•
Ogállar, F.
•
Oprea, A.
•
Patronis, N.
•
Pavlik, A.
•
Perkowski, J.
•
Rauscher, T.
•
Persanti, L.
•
Petrone, C.
•
Pirovano, E.
•
Porras, I.
•
Praena, J.
•
Reifarth, R.
•
Rochman, D.
•
Rubbia, C.
•
Sabaté-Gilarte, M.
•
•
Schillebeeckx, P.
•
Schumann, D.
•
Alcayne, V.
•
Sekhar, A.
•
Smith, A. G.
•
Sosnin, N. V.
•
Sprung, P.
•
Stamatopoulos, A.
•
Tagliente, G.
•
Tain, J. L.
•
Tassan-Got, L.
•
Thomas, Th.
•
Torres-Sánchez, P.
•
Guerrero, C.
•
Tsinganis, A.
•
Ulrich, J.
•
Urlass, S.
•
Valenta, S.
•
Vannini, G.
•
Variale, V.
•
Vaz, P.
•
Ventura, A.
•
•
Vlachoudis, V.
•
Millán-Callado, M. A.
•
Vlastou, R.
•
Wallner, A.
•
Woods, P. J.
•
Wright, T.
•
Žugec, P.
•
Rodríguez-González, T.
•
Barbagallo, M.
•
Aberle, O.
•
Amaducci, S.
•
Andrzejewski, J.
•
Audouin, L.
•
Bacak, M.
•
Bennett, S.
•
Berthoumieux, E.
•
Billowes, J.
•
Bosnar, D.
•
Brown, A.
•
Busso, M.
•
Caamaño, M.
•
Calviani, M.
•
Cano-Ott, D.
•
Cerutti, F.
•
Chiaveri, E.
•
Colonna, N.
•
Cortés, G.
•
Cortés-Giraldo, M. A.
•
Cosentino, L.
•
•
Damone, L. A.
•
Davies, P. J.
•
Diakaki, M.
•
Dietz, M.
•
Dressler, R.
•
Ducasse, Q.
•
Dupont, E.
•
Durán, I.
•
Eleme, Z.
•
Fernández-Domínguez, B.
•
Ferrari, A.
•
Finocchiaro, P.
•
Furman, V.
•
Göbel, K.
•
Garg, R.
•
Gawlik, A.
•
Gilardoni, S.
•
Gonçalves, I. F.
•
González-Romero, E.
•
Gunsing, F.
•
Harada, H.
•
Heinitz, S.
•
Heyse, J.
•
Jenkins, D. G.
•
Junghans, A.
•
Käppeler, F.
•
Kadi, Y.
•
Kimura, A.
Abstract
i-TED is an innovative detection system which exploits Compton imaging techniques to achieve a superior signal-to-background ratio in (n ,γ ) cross-section measurements using time-of-flight technique. This work presents the first experimental validation of the i-TED apparatus for high-resolution time-of-flight experiments and demonstrates for the first time the concept proposed for background rejection. To this aim, the 197Au(n ,γ ) and 56Fe(n ,γ ) reactions were studied at CERN n_TOF using an i-TED demonstrator based on three position-sensitive detectors. Two C6D6 detectors were also used to benchmark the performance of i-TED. The i-TED prototype built for this study shows a factor of ∼3 higher detection sensitivity than state-of-the-art C6D6 detectors in the 10 keV neutron-energy region of astrophysical interest. This paper explores also the perspectives of further enhancement in performance attainable with the final i-TED array consisting of twenty position-sensitive detectors and new analysis methodologies based on Machine-Learning techniques.
Volume
57
Issue
6
Start page
197
Issn Identifier
1434-6001
Ads BibCode
2021EPJA...57..197B
Rights
open.access
File(s)![Thumbnail Image]()
![Thumbnail Image]()
Loading...
Name
2012.10374_compr.pdf
Description
preprint
Size
731.51 KB
Format
Adobe PDF
Checksum (MD5)
79e47550306d4d0bdc2a5d5fcf6f26dd
Loading...
Name
Babiano-Suárez_2021_EPJA_57_197.pdf
Description
[Administrators only]
Size
2.25 MB
Format
Adobe PDF
Checksum (MD5)
6d4f2500292ad712eaa614a9e494a3d9