Skip navigation
  • INAF logo
  • Home
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects
  • Explore by
    • Research outputs
    • Researchers
    • Organization units
    • Projects
  • Login:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
  • Italian
  • English

  1. OA@INAF
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12386/31804
Title: The GOGREEN survey: Internal dynamics of clusters of galaxies at redshift 0.9-1.4
Authors: BIVIANO, ANDREA 
van der Burg, R. F. J.
Balogh, M. L.
Munari, Emiliano 
Cooper, M. C.
DE LUCIA, GABRIELLA 
Demarco, R.
Jablonka, P.
Muzzin, A.
Nantais, J.
Old, L. J.
Rudnick, G.
Vulcani, Benedetta 
Wilson, G.
Yee, H. K. C.
Zaritsky, D.
Cerulo, P.
Chan, J.
Finoguenov, A.
Gilbank, D.
Lidman, C.
Pintos-Castro, I.
Shipley, H.
Issue Date: 2021
Journal: ASTRONOMY & ASTROPHYSICS 
Number: 650
First Page: A105
Abstract: Context. The study of galaxy cluster mass profiles (M(r)) provides constraints on the nature of dark matter and on physical processes affecting the mass distribution. The study of galaxy cluster velocity anisotropy profiles (β(r)) informs the orbits of galaxies in clusters, which are related to their evolution. The combination of mass profiles and velocity anisotropy profiles allows us to determine the pseudo phase-space density profiles (Q(r)); numerical simulations predict that these profiles follow a simple power law in cluster-centric distance. <BR /> Aims: We determine the mass, velocity anisotropy, and pseudo phase-space density profiles of clusters of galaxies at the highest redshifts investigated in detail to date. <BR /> Methods: We exploited the combination of the GOGREEN and GCLASS spectroscopic data-sets for 14 clusters with mass M<SUB>200</SUB> ≥ 10<SUP>14</SUP> M<SUB>⊙</SUB> at redshifts 0.9 ≤ z ≤ 1.4. We constructed an ensemble cluster by stacking 581 spectroscopically identified cluster members with stellar mass M<SUB>⋆</SUB> ≥ 10<SUP>9.5</SUP> M<SUB>⊙</SUB>. We used the MAMPOSSt method to constrain several M(r) and β(r) models, and we then inverted the Jeans equation to determine the ensemble cluster β(r) in a non-parametric way. Finally, we combined the results of the M(r) and β(r) analysis to determine Q(r) for the ensemble cluster. <BR /> Results: The concentration c<SUB>200</SUB> of the ensemble cluster mass profile is in excellent agreement with predictions from Λ cold dark matter (ΛCDM) cosmological numerical simulations, and with previous determinations for clusters of similar mass and at similar redshifts, obtained from gravitational lensing and X-ray data. We see no significant difference between the total mass density and either the galaxy number density distributions or the stellar mass distribution. Star-forming galaxies are spatially significantly less concentrated than quiescent galaxies. The orbits of cluster galaxies are isotropic near the center and more radial outside. Star-forming galaxies and galaxies of low stellar mass tend to move on more radially elongated orbits than quiescent galaxies and galaxies of high stellar mass. The profile Q(r), determined using either the total mass or the number density profile, is very close to the power-law behavior predicted by numerical simulations. <BR /> Conclusions: The internal dynamics of clusters at the highest redshift probed in detail to date are very similar to those of lower-redshift clusters, and in excellent agreement with predictions of numerical simulations. The clusters in our sample have already reached a high degree of dynamical relaxation.
URI: http://hdl.handle.net/20.500.12386/31804
URL: https://www.aanda.org/articles/aa/abs/2021/06/aa40564-21/aa40564-21.html
http://arxiv.org/abs/2104.01183v2
ISSN: 0004-6361
DOI: 10.1051/0004-6361/202140564
Bibcode ADS: 2021A&A...650A.105B
Fulltext: open
Appears in Collections:1.01 Articoli in rivista

Files in This Item:
File Description SizeFormat
2104.01183.pdfpostprint982.5 kBAdobe PDFView/Open
aa40564-21.pdfPdf editoriale1.02 MBAdobe PDFView/Open
Show full item record

Page view(s)

18
checked on Feb 6, 2023

Download(s)

9
checked on Feb 6, 2023

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are published in Open Access, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects

Informazioni e guide per autori

https://openaccess-info.inaf.it: tutte le informazioni sull'accesso aperto in INAF

Come si inserisce un prodotto: le guide a OA@INAF

La Policy INAF sull'accesso aperto

Documenti e modelli scaricabili

Feedback
Built with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE