Skip navigation
  • INAF logo
  • Home
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects
  • Explore by
    • Research outputs
    • Researchers
    • Organization units
    • Projects
  • Login:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
  • Italian
  • English

  1. OA@INAF
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12386/32070
Title: Wind of change: retrieving exoplanet atmospheric winds from high-resolution spectroscopy
Authors: Seidel, J. V.
Ehrenreich, D.
Pino, Lorenzo 
Bourrier, V.
Lavie, B.
Allart, R.
Wyttenbach, A.
Lovis, C.
Issue Date: 2020
Journal: ASTRONOMY & ASTROPHYSICS 
Number: 633
First Page: A86
Abstract: Context. The atmosphere of exoplanets has been studied extensively in recent years, making use of numerical models to retrieve chemical composition, dynamical circulation, or temperature from the data. One of the best observational probes in transmission is the sodium doublet thanks to its extensive cross-section. However, modelling the shape of planetary sodium lines has proven to be challenging. Models with different assumptions regarding the atmosphere have been employed to fit the lines in the literature, yet statistically-sound, direct comparisons of different models are needed to paint a clear picture. <BR /> Aims: We aim to compare different wind and temperature patterns, as well as to provide a tool to distinguish them based on their best fit for the sodium transmission spectrum of the hot Jupiter HD 189733b. We parametrise different possible wind patterns that have already been tested the in literature and introduce the new option of an upwards-driven vertical wind. <BR /> Methods: We construct a forward model where the wind speed, wind geometry, and temperature are injected into the calculation of the transmission spectrum. We embed this forward model in a nested sampling retrieval code to rank the models via their Bayesian evidence. <BR /> Results: We retrieve a best-fit to the HD 189733b data for vertical upward winds |v<SUB>ver</SUB>(mean)| = 40 ± 4 km s<SUP>-1</SUP> at altitudes above 10<SUP>-6</SUP> bar. With the current data from HARPS, we cannot distinguish wind patterns for higher-pressure atmospheric layers. <BR /> Conclusions: We show that vertical upwards winds in the upper atmosphere provide a possible explanation for the broad sodium signature in hot Jupiters. We highlight other influences on the width of the doublet and we explore strong magnetic fields acting on the lower atmosphere as one possible origin of the retrieved wind speed.
URI: http://hdl.handle.net/20.500.12386/32070
URL: https://www.aanda.org/articles/aa/full_html/2020/01/aa36892-19/aa36892-19.html
ISSN: 0004-6361
DOI: 10.1051/0004-6361/201936892
Bibcode ADS: 2020A&A...633A..86S
Fulltext: open
Appears in Collections:1.01 Articoli in rivista

Files in This Item:
File Description SizeFormat
aa36892-19 compr.pdfPDF editoriale4.6 MBAdobe PDFView/Open
Show full item record

Page view(s)

13
checked on Aug 10, 2022

Download(s)

4
checked on Aug 10, 2022

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are published in Open Access, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects

Informazioni e guide per autori

https://openaccess-info.inaf.it: tutte le informazioni sull'accesso aperto in INAF

Come si inserisce un prodotto: le guide a OA@INAF

La Policy INAF sull'accesso aperto

Documenti e modelli scaricabili

Feedback
Built with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE