Skip navigation
  • INAF logo
  • Home
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects
  • Explore by
    • Research outputs
    • Researchers
    • Organization units
    • Projects
  • Login:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
  • Italian
  • English

  1. OA@INAF
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12386/32095
DC FieldValueLanguage
dc.contributor.authorD. Huppenkothenen_US
dc.contributor.authorBACHETTI, Matteoen_US
dc.date.accessioned2022-05-09T14:45:44Z-
dc.date.available2022-05-09T14:45:44Z-
dc.date.issued2022en_US
dc.identifier.issn0035-8711en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12386/32095-
dc.description.abstractBecause many of our X-ray telescopes are optimized towards observing faint sources, observations of bright sources like X-ray binaries in outburst are often affected by instrumental biases. These effects include dead time and photon pile-up, which can dramatically change the statistical inference of physical parameters from these observations. While dead time is difficult to take into account in a statistically consistent manner, simulating dead time-affected data is often straightforward. This structure makes the issue of inferring physical properties from dead time-affected observations fall into a class of problems common across many scientific disciplines. There is a growing number of methods to address them under the name of Simulation-Based Inference (SBI), aided by new developments in density estimation and statistical machine learning. In this paper, we introduce SBI as a principled way to infer variability properties from dead time-affected light curves. We use Sequential Neural Posterior Estimation to estimate the posterior probability for variability properties. We show that this method can recover variability parameters on simulated data even when dead time is variable, and present results of an application of this approach to NuSTAR observations of the galactic black hole X-ray binary GRS 1915+105.en_US
dc.language.isoengen_US
dc.titleAccurate X-ray Timing in the Presence of Systematic Biases With Simulation-Based Inferenceen_US
dc.typeArticle-
dc.identifier.doi10.1093/mnras/stab3437en_US
dc.identifier.urlhttp://arxiv.org/abs/2104.03278v2en_US
dc.identifier.urlhttps://academic.oup.com/mnras/article-abstract/511/4/5689/6460498?redirectedFrom=fulltext&login=falseen_US
dc.relation.mediumSTAMPAen_US
dc.relation.volume511en_US
dc.relation.issue4en_US
dc.relation.firstpage5689en_US
dc.relation.lastpage5708en_US
dc.type.refereeREF_1en_US
dc.description.internationalsìen_US
dc.contributor.countryITAen_US
dc.contributor.countryNLDen_US
dc.relation.scientificsectorFIS/05 - ASTRONOMIA E ASTROFISICAen_US
dc.relation.journalMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETYen_US
dc.type.miur262 Articolo in rivista-
dc.relation.ercsectorERC sectors::Physical Sciences and Engineering::PE9 Universe sciences: astro-physics/chemistry/biology; solar systems; stellar, galactic and extragalactic astronomy, planetary systems, cosmology, space science, instrumentation::PE9_10 High energy and particle astronomy – X-rays, cosmic rays, gamma rays, neutrinosen_US
dc.description.apcnoen_US
dc.description.oa1 – prodotto con file in versione Open Access (allegare il file al passo  5-Carica)en_US
item.openairetypeArticle-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
crisitem.journal.journalissn0035-8711-
crisitem.journal.anceE112946-
crisitem.author.deptO.A. Cagliari-
crisitem.author.orcid0000-0002-4576-9337-
Appears in Collections:1.01 Articoli in rivista
Files in This Item:
File Description SizeFormat
2104.03278.pdfpostprint2.53 MBAdobe PDFView/Open
stab3437.pdfPDF editoriale5.93 MBAdobe PDFView/Open
Show simple item record

Page view(s)

25
checked on Jul 1, 2022

Download(s)

6
checked on Jul 1, 2022

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are published in Open Access, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects

Informazioni e guide per autori

https://openaccess-info.inaf.it: tutte le informazioni sull'accesso aperto in INAF

Come si inserisce un prodotto: le guide a OA@INAF

La Policy INAF sull'accesso aperto

Documenti e modelli scaricabili

Feedback
Built with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE