Repository logo
  • English
  • Italiano
Log In
Have you forgotten your password?
  1. Home
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
  5. The LOFAR view of intergalactic magnetic fields with giant radio galaxies
 

The LOFAR view of intergalactic magnetic fields with giant radio galaxies

Journal
ASTRONOMY & ASTROPHYSICS  
Date Issued
2020
Author(s)
Stuardi, C.
•
O'Sullivan, S. P.
•
BONAFEDE, ANNALISA  
•
Brüggen, M.
•
Dabhade, P.
•
Horellou, C.
•
Morganti, R.
•
CARRETTI, ETTORE  
•
Heald, G.
•
Iacobelli, M.
•
VACCA, VALENTINA  
DOI
10.1051/0004-6361/202037635
Abstract
Context. Giant radio galaxies (GRGs) are physically large radio sources that extend well beyond their host galaxy environment. Their polarization properties are affected by the poorly constrained magnetic field that permeates the intergalactic medium on megaparsec scales. A low frequency (< 200 MHz) polarization study of this class of radio sources is now possible with LOFAR.
Aims: Here we investigate the polarization properties and Faraday rotation measure (RM) of a catalog of GRGs detected in the LOFAR Two-meter Sky Survey. This is the first low frequency polarization study of a large sample of radio galaxies that were selected on their physical size. We explore the magneto-ionic properties of their under-dense environment and probe intergalactic magnetic fields using the Faraday rotation properties of their radio lobes. LOFAR is a key instrument for this kind of analysis because it can probe small amounts of Faraday dispersion (< 1 rad m-2), which are associated with weak magnetic fields and low thermal gas densities.
Methods: We used RM synthesis in the 120-168 MHz band to search for polarized emission and to derive the RM and fractional polarization of each detected source component. We study the depolarization between 1.4 GHz and 144 MHz using images from the NRAO VLA Sky Survey. We investigate the correlation of the detection rate, the RM difference between the lobes, and the depolarization with different parameters as follows: the angular and linear size of the sources and the projected distance from the closest foreground galaxy cluster. In our sample, we also included 3C 236, which is one of the largest radio galaxies known.
Results: From a sample of 240 GRGs, we detected 37 sources in polarization, all of which have a total flux density above 56 mJy. We detected significant RM differences between the lobes, which would be inaccessible at gigahertz frequencies, with a median value of ∼1 rad m-2. The fractional polarization of the detected GRGs at 1.4 GHz and 144 MHz is consistent with a small amount of Faraday depolarization (a Faraday dispersion < 0.3 rad m-2). Our analysis shows that the lobes are expanding into a low-density (< 10-5 cm-3) local environment that is permeated by weak magnetic fields (< 0.1 μG) with fluctuations on scales of 3-25 kpc. The presence of foreground galaxy clusters appears to influence the polarization detection rate up to 2R500. In general, this work demonstrates the ability of LOFAR to quantify the rarefied environments in which these GRGs exist and highlights them as an excellent statistical sample to use as high precision probes of magnetic fields in the intergalactic medium and the Milky Way.
Volume
638
Start page
A48
Uri
http://hdl.handle.net/20.500.12386/32366
Url
https://arxiv.org/abs/2004.05169
https://www.aanda.org/articles/aa/full_html/2020/06/aa37635-20/aa37635-20.html
Issn Identifier
0004-6361
Ads BibCode
2020A&A...638A..48S
Rights
open.access
File(s)
Loading...
Thumbnail Image
Name

aa37635-20.pdf

Description
Pdf editoriale
Size

3.04 MB

Format

Adobe PDF

Checksum (MD5)

bbf10b058a1333e54b8f49f317748c98

Loading...
Thumbnail Image
Name

2004.05169 (1).pdf

Description
postprint
Size

3.16 MB

Format

Adobe PDF

Checksum (MD5)

29627fcbe648c5c726aec5960e6c7a22

Explore By
  • Communities and Collection
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Information and guides for authors
  • https://openaccess-info.inaf.it: all about open access in INAF
  • How to enter a product: guides to OA@INAF
  • The INAF Policy on Open Access
  • Downloadable documents and templates

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback