Skip navigation
  • INAF logo
  • Home
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects
  • Explore by
    • Research outputs
    • Researchers
    • Organization units
    • Projects
  • Login:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
  • Italian
  • English

  1. OA@INAF
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12386/32582
DC FieldValueLanguage
dc.contributor.authorCAVUOTI, STEFANOen_US
dc.contributor.authorBRESCIA, Massimoen_US
dc.contributor.authorD'Abrusco, Raffaeleen_US
dc.contributor.authorLongo, Giuseppeen_US
dc.contributor.authorPaolillo, Maurizioen_US
dc.date.accessioned2022-09-16T10:47:57Z-
dc.date.available2022-09-16T10:47:57Z-
dc.date.issued2014en_US
dc.identifier.issn0035-8711en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12386/32582-
dc.description.abstractIn this paper, we discuss an application of machine-learning-based methods to the identification of candidate active galactic nucleus (AGN) from optical survey data and to the automatic classification of AGNs in broad classes. We applied four different machine-learning algorithms, namely the Multi Layer Perceptron, trained, respectively, with the Conjugate Gradient, the Scaled Conjugate Gradient, the Quasi Newton learning rules and the Support Vector Machines, to tackle the problem of the classification of emission line galaxies in different classes, mainly AGNs versus non-AGNs, obtained using optical photometry in place of the diagnostics based on line intensity ratios which are classically used in the literature. Using the same photometric features, we discuss also the behaviour of the classifiers on finer AGN classification tasks, namely Seyfert I versus Seyfert II, and Seyfert versus LINER. Furthermore, we describe the algorithms employed, the samples of spectroscopically classified galaxies used to train the algorithms, the procedure followed to select the photometric parameters and the performances of our methods in terms of multiple statistical indicators. The results of the experiments show that the application of self-adaptive data mining algorithms trained on spectroscopic data sets and applied to carefully chosen photometric parameters represents a viable alternative to the classical methods that employ time-consuming spectroscopic observations.en_US
dc.language.isoengen_US
dc.titlePhotometric classification of emission line galaxies with machine-learning methodsen_US
dc.typeArticle-
dc.identifier.doi10.1093/mnras/stt1961en_US
dc.identifier.scopus2-s2.0-84890014763en_US
dc.identifier.urlhttps://academic.oup.com/mnras/article/437/1/968/1011114en_US
dc.identifier.urlhttp://arxiv.org/abs/1310.2840v1en_US
dc.relation.mediumSTAMPAen_US
dc.relation.volume437en_US
dc.relation.issue1en_US
dc.relation.firstpage968en_US
dc.relation.lastpage975en_US
dc.type.refereeREF_1en_US
dc.relation.scientificsectorFIS/05 - ASTRONOMIA E ASTROFISICAen_US
dc.relation.journalMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETYen_US
dc.type.miur262 Articolo in rivista-
dc.identifier.adsbibcode2014MNRAS.437..968Cen_US
dc.description.apcnoen_US
dc.description.oa1 – prodotto con file in versione Open Access (allegare il file al passo  5-Carica)en_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.journal.journalissn0035-8711-
crisitem.journal.anceE112946-
crisitem.author.deptO.A. Capodimonte-
crisitem.author.deptO.A. Capodimonte-
crisitem.author.deptO.A. Capodimonte-
crisitem.author.orcid0000-0002-3787-4196-
crisitem.author.orcid0000-0001-9506-5680-
crisitem.author.orcid0000-0003-4210-7693-
Appears in Collections:1.01 Articoli in rivista
Files in This Item:
File Description SizeFormat
stt1961.pdfPdf editoriale806.11 kBAdobe PDFView/Open
Show simple item record

Page view(s)

20
checked on Apr 2, 2023

Download(s)

6
checked on Apr 2, 2023

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are published in Open Access, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects

Informazioni e guide per autori

https://openaccess-info.inaf.it: tutte le informazioni sull'accesso aperto in INAF

Come si inserisce un prodotto: le guide a OA@INAF

La Policy INAF sull'accesso aperto

Documenti e modelli scaricabili

Feedback
Built with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE