Skip navigation
  • INAF logo
  • Home
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects
  • Explore by
    • Research outputs
    • Researchers
    • Organization units
    • Projects
  • Login:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
  • Italian
  • English

  1. OA@INAF
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12386/32733
Title: Closing gaps to our origins: EUVO: the ultraviolet-visible window into the Universe
Authors: Gómez de Castro, Ana I.
Barstow, Martin A.
Baudin, Frederic
BENETTI, Stefano 
Bouret, Jean Claude
Brosch, Noah
Canet, Ada
DE MARTINO, Domitilla 
Zanna, Giulio del
Evans, Chris
France, Kevin
García, Miriam
Gaensicke, Boris
Hillenbrand, Lynne
Josselin, Eric
Kehrig, Carolina
Lamy, Laurent
Lapington, Jon
Etangs, Alain Lecavelier des
Naletto, Giampiero 
Nazé, Yael
Neiner, Coralie
Nichols, Jonathan
ORIO, Marina 
PAGANO, Isabella 
Peroux, Céline
Rauw, Gregor
Shore, Steven
Tovmassian, Gagik
ud-Doula, Asif
Issue Date: 2022
Journal: EXPERIMENTAL ASTRONOMY 
Number: 82
Abstract: This article reproduces the contents of the White Paper entitled by the same name submitted to the call issued by the European Space Agency soliciting ideas from the scientific community for the science themes that should be covered during the Voyage 2050 planning cycle. This contribution focus in the investigation of the emergence of life and the role that astronomy has to play in it. Three fundamental areas of activity are identified: [1] measuring the chemical enrichment of the Universe, [2] investigating planet formation and searching for exoplanets with signatures of life and, [3] determining the abundance of amino acids and the chemical routes to amino acid and protein growth in astronomical bodies. This proposal deals with the first two. The building blocks of life in the Universe began as primordial gas processed in stars and mixed at galactic scales. The mechanisms responsible for this development are not well-understood and have changed over the intervening 13 billion years. To follow the evolution of matter over cosmic time, it is necessary to study the strongest (resonance) transitions of the most abundant species in the Universe. Most of them are in the ultraviolet (UV; 950 Å - 3000 Å) spectral range that is unobservable from the ground; the “missing” metals problem cannot be addressed without this access. Habitable planets grow in protostellar discs under ultraviolet irradiation, a by-product of the accretion process that drives the physical and chemical evolution of discs and young planetary systems. The electronic transitions of the most abundant molecules are pumped by this UV field that is the main oxidizing agent in the disc chemistry and provides unique diagnostics of the planet-forming environment that cannot be accessed from the ground. Knowledge of the variability of the UV radiation field is required for the astrochemical modelling of protoplanetary discs, to understand the formation of planetary atmospheres and the photochemistry of the precursors of life. Earth’s atmosphere is in constant interaction with the interplanetary medium and the solar UV radiation field. The exosphere of the Earth extends up to 35 planetary radii providing an amazing wealth of information on our planet’s winds and the atmospheric compounds. To access to it in other planetary systems, observation of the UV resonance transitions is required. The investigation for the emergence of life calls for the development of large astronomical facilities, including instrumentation in optical and UV wavelengths. In this contribution, the need to develop a large observatory in the optical and in the UV is revealed, in order to complete the scientific goals to investigate the origin of life, inaccessible through other frequencies in the electromagnetic spectrum.
URI: http://hdl.handle.net/20.500.12386/32733
URL: https://api.elsevier.com/content/abstract/scopus_id/85128728845
https://link.springer.com/article/10.1007/s10686-022-09854-9
ISSN: 0922-6435
DOI: 10.1007/s10686-022-09854-9
Bibcode ADS: 2022ExA...tmp...44G
Fulltext: open
Appears in Collections:1.01 Articoli in rivista

Files in This Item:
File Description SizeFormat
s10686-022-09854-9.pdfPDF editoriale1.31 MBAdobe PDFView/Open
Show full item record

Page view(s)

14
checked on Feb 1, 2023

Download(s)

4
checked on Feb 1, 2023

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are published in Open Access, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects

Informazioni e guide per autori

https://openaccess-info.inaf.it: tutte le informazioni sull'accesso aperto in INAF

Come si inserisce un prodotto: le guide a OA@INAF

La Policy INAF sull'accesso aperto

Documenti e modelli scaricabili

Feedback
Built with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE