Optical tracking of deep-space spacecraft in Halo L2 orbits and beyond: The Gaia mission as a pilot case
The probe has been located, along its projected nominal path, with quite high precision, within 0.13±0.09 arcsec, or 0.9±0.6 km. Spacecraft color appears to be red, with (V -Rc) =1.1±0.2 and a bolometric correction to the Rc band of (Bol -Rc) = -1.1±0.2 . The apparent magnitude, Rc =20.8±0.2 , is much fainter than originally expected. These features lead to suggest a lower limit for the Bond albedo α =0.11±0.05 and confirm that incident Sun light is strongly reddened by GAIA through its on-board MLI blankets covering the solar shield.
Relying on the GAIA figures, we found that VLT-class telescopes could yet be able to probe distant spacecraft heading Mars, up to 30 million km away, while a broader optical coverage of the forthcoming missions to Venus and Mars could be envisaged, providing to deal with space vehicles of minimum effective area A ⩾106 cm2. In addition to L2 surveys, 2 m-class telescopes could also effectively flank standard radar-ranging techniques in deep-space probe tracking along Earth's gravity-assist maneuvers for interplanetary missions.
1601.04719.pdf
853.72 KB
Adobe PDF
86fbc1b79466e6484a788d359c524e01
1-s2.0-S0273117716000090-main.pdf
1.21 MB
Adobe PDF
beeeb2c076a1889701d0bd4520bfae1e