Repository logo
  • English
  • Italiano
Log In
Have you forgotten your password?
  1. Home
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
  5. Dust emissivity in resolved spiral galaxies
 

Dust emissivity in resolved spiral galaxies

Journal
ASTRONOMY & ASTROPHYSICS  
Date Issued
2022
Author(s)
BIANCHI, Simone  
•
CASASOLA, VIVIANA  
•
CORBELLI, Edvige  
•
Galliano, Frédéric
•
MAGRINI, Laura  
•
Nersesian, Angelos
•
SALVESTRINI, Francesco  
•
Baes, Maarten
•
CASSARA, Letizia Pasqua  
•
Clark, Christopher J. R.
•
De Looze, Ilse
•
Jones, Anthony P.
•
Madden, Suzanne C.
•
Mosenkov, Aleksandr
•
Ysard, Nathalie
DOI
10.1051/0004-6361/202243930
Abstract
Context. The far-infrared (FIR) and sub-millimeter (submm) emissivity, ϵν, of the Milky Way (MW) cirrus is an important benchmark for dust grain models. Dust masses in other galaxies are generally derived from the FIR/submm using the emission properties of these MW-calibrated models.
Aims: We seek to derive the FIR/submm ϵν in nine nearby spiral galaxies to check its compatibility with MW cirrus measurements.
Methods: We obtained values of ϵν at 70-500 μm, using maps of dust emission from the Herschel satellite and of gas surface density from the THINGS and HERACLES surveys on a scale generally corresponding to 440 pc. We studied the variation of ϵν with the surface brightness ratio Iν(250 μm)/Iν(500 μm), a proxy for the intensity of the interstellar radiation field heating the dust.
Results: We find that the average value of ϵν agrees with MW estimates for pixels sharing the same color as the cirrus, namely, for Iν(250 μm)/Iν(500 μm)=4.5. For Iν(250 μm)/Iν(500 μm)> 5, the measured emissivity is instead up to a factor ∼2 lower than predicted from MW dust models heated by stronger radiation fields. Regions with higher Iν(250 μm)/Iν(500 μm) are preferentially closer to the galactic center and have a higher overall (stellar+gas) surface density and molecular fraction. The results do not depend strongly on the adopted CO-to-molecular conversion factor and do not appear to be affected by the mixing of heating conditions.
Conclusions: Our results confirm the validity of MW dust models at low density, but are at odds with predictions for grain evolution in higher density environments. If the lower-than-expected ϵν at high Iν(250 μm)/Iν(500 μm) is the result of intrinsic variations in the dust properties, it would imply an underestimation of the dust mass surface density of up to a factor ∼2 when using current dust models.

This work makes use of the DustPedia database. DustPedia is a collaborative focused research project supported by the European Union under the Seventh Framework Programme (2007-2013) call (proposal no. 606824, P.I. J. I. Davies). The database is publicly available at http://dustpedia.astro.noa.gr.

Volume
664
Start page
A187
Uri
http://hdl.handle.net/20.500.12386/33220
Url
https://www.aanda.org/articles/aa/full_html/2022/08/aa43930-22/aa43930-22.html
Issn Identifier
0004-6361
Ads BibCode
2022A&A...664A.187B
Rights
open.access
File(s)
Loading...
Thumbnail Image
Name

aa43930-22.pdf

Description
Pdf editoriale
Size

4.63 MB

Format

Adobe PDF

Checksum (MD5)

c73ab19d3481b95edfa1e853b6210745

Explore By
  • Communities and Collection
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Information and guides for authors
  • https://openaccess-info.inaf.it: all about open access in INAF
  • How to enter a product: guides to OA@INAF
  • The INAF Policy on Open Access
  • Downloadable documents and templates

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback