Skip navigation
  • INAF logo
  • Home
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects
  • Explore by
    • Research outputs
    • Researchers
    • Organization units
    • Projects
  • Login:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
  • Italian
  • English

  1. OA@INAF
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12386/34238
Title: Turbulent magnetic field amplification in binary neutron star mergers
Authors: Palenzuela, C.
Aguilera-Miret, R.
Carrasco, F.
CIOLFI, RICCARDO 
Kalinani, J. V.
Kastaun, W.
Miñano, B.
Viganò, D.
Issue Date: 2022
Journal: PHYSICAL REVIEW D 
Number: 106
Issue: 2
Abstract: Magnetic fields are expected to play a key role in the dynamics and the ejection mechanisms that accompany the merger of two neutron stars. General relativistic magnetohydrodynamic (MHD) simulations offer a unique opportunity to unravel the details of the ongoing physical processes. Nevertheless, current numerical studies are severely limited by the fact that any affordable resolution remains insufficient to fully capture the small-scale dynamo, initially triggered by the Kelvin-Helmholtz instability, and later sourced by several MHD processes involving differential rotation. Here, we alleviate this limitation by using explicit large-eddy simulations, a technique where the unresolved dynamics occurring at the sub-grid scales (SGS) is modeled by extra terms, which are functions of the resolved fields and their derivatives. The combination of high-order numerical schemes, high resolutions, and the gradient SGS model allow us to capture the small-scale dynamos produced during the binary neutron star mergers. Here we follow the first 50 milliseconds after the merger and, for the first time, we find numerical convergence on the magnetic field amplification, in terms of integrated energy and spectral distribution over spatial scales. We also find that the average intensity of the magnetic field in the remnant saturates at $\sim 10^{16}$~G around $5$~ms after the merger. After $20-30$~ms, both toroidal and poloidal magnetic field components grow continuously, fed by the winding mechanism that provides a slow inverse cascade. We find no clear hints for magneto-rotational instabilities, and no significant impact of the magnetic field on the redistribution of angular momentum in the remnant in our simulations, probably due to the very turbulent and dynamical topology of the magnetic field at all stages, with small-scale components largely dominating over the large-scale ones.
URI: http://hdl.handle.net/20.500.12386/34238
URL: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.106.023013
http://arxiv.org/abs/2112.08413v2
ISSN: 2470-0010
DOI: 10.1103/PhysRevD.106.023013
Fulltext: open
Appears in Collections:1.01 Articoli in rivista

Files in This Item:
File Description SizeFormat
Palenzuela_PhysRevD.106.023013.pdfPdf editoriale9.09 MBAdobe PDFView/Open
Show full item record

Page view(s)

11
checked on Sep 21, 2023

Download(s)

5
checked on Sep 21, 2023

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are published in Open Access, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects

Informazioni e guide per autori

https://openaccess-info.inaf.it: tutte le informazioni sull'accesso aperto in INAF

Come si inserisce un prodotto: le guide a OA@INAF

La Policy INAF sull'accesso aperto

Documenti e modelli scaricabili

Feedback
Built with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE