Please use this identifier to cite or link to this item:
http://hdl.handle.net/20.500.12386/34865
Title: | The GAPS Programme at TNG XXXIX. Multiple Molecular Species in the Atmosphere of the Warm Giant Planet WASP-80 b Unveiled at High Resolution with GIANO-B | Authors: | Carleo, I. GIACOBBE, Paolo Guilluy, G. Cubillos, P.E. BONOMO, ALDO STEFANO SOZZETTI, Alessandro Brogi, M. Gandhi, S. Fossati, L. TURRINI, Diego BIAZZO, Katia BORSA, Francesco LANZA, Antonino Francesco Malavolta, L. MAGGIO, Antonio Mancini, L. MICELA, Giuseppina PINO, Lorenzo PORETTI, Ennio RAINER, Monica SCANDARIATO, GAETANO SCHISANO, EUGENIO ANDREUZZI, Gloria BIGNAMINI, ANDREA COSENTINO, Rosario Fiorenzano, A. Harutyunyan, A. MOLINARI, Emilio Carlo Pedani, M. Redfield, S. Stoev, H. |
Issue Date: | 2022 | Journal: | THE ASTRONOMICAL JOURNAL | Number: | 164 | Issue: | 3 | First Page: | 101 | Abstract: | Detections of molecules in the atmosphere of gas giant exoplanets allow us to investigate the physico-chemical properties of the atmospheres. Their inferred chemical composition is used as tracer of planet formation and evolution mechanisms. Currently, an increasing number of detections is showing a possible rich chemistry of the hotter gaseous planets, but whether this extends to cooler giants is still unknown. We observed four transits of WASP-80 b, a warm transiting giant planet orbiting a late-K dwarf star with the near-infrared GIANO-B spectrograph installed at the Telescopio Nazionale Galileo and performed high-resolution transmission spectroscopy analysis. We report the detection of several molecular species in its atmosphere. Combining the four nights and comparing our transmission spectrum to planetary atmosphere models containing the signature of individual molecules within the cross-correlation framework, we find the presence of H2O, CH4, NH3, and HCN with high significance, tentative detection of CO2, and inconclusive results for C2H2 and CO. A qualitative interpretation of these results, using physically motivated models, suggests an atmosphere consistent with solar composition and the presence of disequilibrium chemistry and we therefore recommend the inclusion of the latter in future modeling of sub-1000 K planets. | URI: | http://hdl.handle.net/20.500.12386/34865 | URL: | https://iopscience.iop.org/article/10.3847/1538-3881/ac80bf http://www.scopus.com/inward/record.url?eid=2-s2.0-85136641288&partnerID=MN8TOARS |
ISSN: | 0004-6256 | DOI: | 10.3847/1538-3881/ac80bf | Fulltext: | open |
Appears in Collections: | 1.01 Articoli in rivista |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Carleo_2022_AJ_164_101.pdf | Pdf editoriale | 1.02 MB | Adobe PDF | View/Open |
Page view(s)
43
checked on Dec 10, 2024
Download(s)
9
checked on Dec 10, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are published in Open Access, unless otherwise indicated.