Repository logo
  • English
  • Italiano
Log In
Have you forgotten your password?
  1. Home
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
  5. Detection of the tidal deformation of WASP-103b at 3 σ with CHEOPS
 

Detection of the tidal deformation of WASP-103b at 3 σ with CHEOPS

Journal
ASTRONOMY & ASTROPHYSICS  
Date Issued
2022
Author(s)
Barros, S. C. C.
•
Akinsanmi, B.
•
Boué, G.
•
Smith, A. M. S.
•
Laskar, J.
•
Ulmer-Moll, S.
•
Lillo-Box, J.
•
Queloz, D.
•
Cameron, A. Collier
•
Sousa, S. G.
•
Ehrenreich, D.
•
Hooton, M. J.
•
BRUNO, Giovanni  
•
Demory, B. -O.
•
Correia, A. C. M.
•
Demangeon, O. D. S.
•
Wilson, T. G.
•
Bonfanti, A.
•
Hoyer, S.
•
Alibert, Y.
•
Alonso, R.
•
Escudé, G. Anglada
•
Barbato, D.
•
Bárczy, T.
•
Barrado, D.
•
Baumjohann, W.
•
Beck, M.
•
Beck, T.
•
Benz, W.
•
BERGOMI, Maria  
•
Billot, N.
•
Bonfils, X.
•
Bouchy, F.
•
Brandeker, A.
•
Broeg, C.
•
Cabrera, J.
•
Cessa, V.
•
Charnoz, S.
•
Damme, C. C. V.
•
Davies, M. B.
•
Deleuil, M.
•
Deline, A.
•
Delrez, L.
•
Erikson, A.
•
Fortier, A.
•
Fossati, L.
•
Fridlund, M.
•
Gandolfi, D.
•
Muñoz, A. García
•
Gillon, M.
•
Güdel, M.
•
Isaak, K. G.
•
Heng, K.
•
Kiss, L.
•
des Etangs, A. Lecavelier
•
Lendl, M.
•
Lovis, C.
•
MAGRIN, DEMETRIO  
•
NASCIMBENI, VALERIO  
•
Maxted, P. F. L.
•
Olofsson, G.
•
Ottensamer, R.
•
PAGANO, Isabella  
•
Pallé, E.
•
Parviainen, H.
•
Peter, G.
•
Piotto, G.
•
Pollacco, D.
•
RAGAZZONI, Roberto  
•
Rando, N.
•
Rauer, H.
•
Ribas, I.
•
Santos, N. C.
•
SCANDARIATO, GAETANO  
•
Ségransan, D.
•
Simon, A. E.
•
Steller, M.
•
Szabó, Gy. M.
•
Thomas, N.
•
Udry, S.
•
Ulmer, B.
•
Van Grootel, V.
•
Walton, N. A.
DOI
10.1051/0004-6361/202142196
Abstract
Context. Ultra-short period planets undergo strong tidal interactions with their host star which lead to planet deformation and orbital tidal decay.
Aims: WASP-103b is the exoplanet with the highest expected deformation signature in its transit light curve and one of the shortest expected spiral-in times. Measuring the tidal deformation of the planet would allow us to estimate the second degree fluid Love number and gain insight into the planet's internal structure. Moreover, measuring the tidal decay timescale would allow us to estimate the stellar tidal quality factor, which is key to constraining stellar physics.
Methods: We obtained 12 transit light curves of WASP-103b with the CHaracterising ExOplanet Satellite (CHEOPS) to estimate the tidal deformation and tidal decay of this extreme system. We modelled the high-precision CHEOPS transit light curves together with systematic instrumental noise using multi-dimensional Gaussian process regression informed by a set of instrumental parameters. To model the tidal deformation, we used a parametrisation model which allowed us to determine the second degree fluid Love number of the planet. We combined our light curves with previously observed transits of WASP-103b with the Hubble Space Telescope (HST) and Spitzer to increase the signal-to-noise of the light curve and better distinguish the minute signal expected from the planetary deformation.
Results: We estimate the radial Love number of WASP-103b to be hf = 1.59−0.53+0.45. This is the first time that the tidal deformation is directly detected (at 3 σ) from the transit light curve of an exoplanet. Combining the transit times derived from CHEOPS, HST, and Spitzer light curves with the other transit times available in the literature, we find no significant orbital period variation for WASP-103b. However, the data show a hint of an orbital period increase instead of a decrease, as is expected for tidal decay. This could be either due to a visual companion star if this star is bound, the Applegate effect, or a statistical artefact.
Conclusions: The estimated Love number of WASP-103b is similar to Jupiter's. This will allow us to constrain the internal structure and composition of WASP-103b, which could provide clues on the inflation of hot Jupiters. Future observations with James Webb Space Telescope can better constrain the radial Love number of WASP-103b due to their high signal-to-noise and the smaller signature of limb darkening in the infrared. A longer time baseline is needed to constrain the tidal decay in this system.

The transit light curves are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/657/A52....

Volume
657
Start page
A52
Uri
http://hdl.handle.net/20.500.12386/34866
Url
https://www.aanda.org/articles/aa/full_html/2022/01/aa42196-21/aa42196-21.html
http://www.scopus.com/inward/record.url?eid=2-s2.0-85123046827&partnerID=MN8TOARS
Issn Identifier
0004-6361
Ads BibCode
2022A&A...657A..52B
Rights
open.access
File(s)
Loading...
Thumbnail Image
Name

aa42196-21.pdf

Description
Pdf editoriale
Size

1.94 MB

Format

Adobe PDF

Checksum (MD5)

fcda2fd6692f21154126ed91ee6d58ae

Explore By
  • Communities and Collection
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Information and guides for authors
  • https://openaccess-info.inaf.it: all about open access in INAF
  • How to enter a product: guides to OA@INAF
  • The INAF Policy on Open Access
  • Downloadable documents and templates

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback