Title: | Euclid preparation - XXIII. Derivation of galaxy physical properties with deep machine learning using mock fluxes and H-band images |
Authors: | Euclid Collaboration BISIGELLO, Laura Conselice, C. J. Baes, M. BOLZONELLA, Micol BRESCIA, Massimo CAVUOTI, STEFANO CUCCIATI, Olga Humphrey, A. HUNT, Leslie Kipp Maraston, C. Rosset, C. Rossetti, E. Saglia, R. Sapone, D. Sartoris, Barbara Schneider, P. SCODEGGIO, MARCO Secroun, A. Seidel, G. Sirignano, C. POZZETTI, Lucia Sirri, G. Stanco, L. Tallada-Crespí, P. TAVAGNACCO, Daniele Taylor, A. N. Tereno, I. Toledo-Moreo, R. Torradeflot, F. Tutusaus, I. Valentijn, E. A. TORTORA, CRESCENZO VALENZIANO, Luca Vassallo, T. Wang, Y. ZACCHEI, Andrea Zamorani, G. Zoubian, J. ANDREON, Stefano BARDELLI, Sandro Boucaud, A. Colodro-Conde, C. van Mierlo, S. E. Di Ferdinando, D. Graciá-Carpio, J. Lindholm, V. Maino, D. Mei, S. Scottez, V. Sureau, F. Tenti, M. ZUCCA, Elena Borlaff, A. S. Aghanim, N. Ballardini, M. BIVIANO, ANDREA Bozzo, E. BURIGANA, Carlo Cabanac, R. CAPPI, Alberto Carvalho, C. S. Casas, S. Castignani, G. Cooray, A. AURICCHIO, NATALIA Coupon, J. Courtois, H. M. Cuby, J. Davini, S. DE LUCIA, GABRIELLA Desprez, G. Dole, H. Escartin, J. A. Escoffier, S. FARINA, Maria Baldi, M. Fotopoulou, S. Ganga, K. Garcia-Bellido, J. George, K. Giacomini, F. Gozaliasl, G. Hildebrandt, H. Hook, I. Huertas-Company, M. Kansal, V. Bender, R. Keihanen, E. Kirkpatrick, C. C. Loureiro, A. Macías-Pérez, J. F. MAGLIOCCHETTI, MANUELA Mainetti, G. Marcin, S. Martinelli, M. Martinet, N. Metcalf, R. B. Bodendorf, C. MONACO, Pierluigi MORGANTE, GIANLUCA Nadathur, S. Nucita, A. A. Patrizii, L. Peel, A. Potter, D. Pourtsidou, A. Pöntinen, M. Reimberg, P. BONINO, Donata Sánchez, A. G. Sakr, Z. Schirmer, M. SEFUSATTI, Emiliano SERENO, Mauro Stadel, J. Teyssier, R. Valieri, C. Valiviita, J. VIEL, Matteo Branchini, Enzo Brinchmann, J. Camera, S. Capobianco, Vito CARBONE, Carmelita Carretero, J. Castander, F. J. CASTELLANO, Marco Cimatti, A. Congedo, G. Conversi, L. Copin, Y. CORCIONE, Leonardo Courbin, F. Cropper, M. Da Silva, A. Degaudenzi, H. Douspis, M. Dubath, F. Duncan, C. A. J. Dupac, X. Dusini, S. Farrens, S. Ferriol, S. FRAILIS, Marco FRANCESCHI, ENRICO FRANZETTI, Paolo FUMANA, Marco GARILLI, Bianca Maria Rosa Gillard, W. Gillis, B. GIOCOLI, Carlo GRAZIAN, Andrea Grupp, F. Guzzo, L. Haugan, S. V. H. Holmes, W. Hormuth, F. Hornstrup, A. Jahnke, K. Kümmel, M. Kermiche, S. Kiessling, A. Kilbinger, M. Kohley, R. Kunz, M. Kurki-Suonio, H. LIGORI, Sebastiano Lilje, P. B. Lloro, I. MAIORANO, Elisabetta MANSUTTI, Oriana Marggraf, O. Markovic, K. Marulli, F. Massey, R. Maurogordato, S. Medinaceli, E. MENEGHETTI, MASSIMO MERLIN, Emiliano Meylan, G. Moresco, M. Moscardini, L. MUNARI, Emiliano Niemi, S. M. Padilla, C. Paltani, S. Pasian, F. Pedersen, K. Pettorino, V. Polenta, G. Poncet, M. Popa, L. Raison, F. Renzi, A. Rhodes, J. RICCIO, GIUSEPPE Rix, H. -W. ROMELLI, Erik Roncarelli, M. |
Issue Date: | 2023 |
Journal: | MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY |
Number: | 520 |
Issue: | 3 |
First Page: | 3529 |
Abstract: | Next-generation telescopes, like Euclid, Rubin/LSST, and Roman, will open new windows on the Universe, allowing us to infer physical properties for tens of millions of galaxies. Machine-learning methods are increasingly becoming the most efficient tools to handle this enormous amount of data, because they are often faster and more accurate than traditional methods. We investigate how well redshifts, stellar masses, and star-formation rates (SFRs) can be measured with deep-learning algorithms for observed galaxies within data mimicking the Euclid and Rubin/LSST surveys. We find that deep-learning neural networks and convolutional neural networks (CNNs), which are dependent on the parameter space of the training sample, perform well in measuring the properties of these galaxies and have a better accuracy than methods based on spectral energy distribution fitting. CNNs allow the processing of multiband magnitudes together with $H_{\scriptscriptstyle \rm E}$-band images. We find that the estimates of stellar masses improve with the use of an image, but those of redshift and SFR do not. Our best results are deriving (i) the redshift within a normalized error of <0.15 for 99.9 ${{\ \rm per\ cent}}$ of the galaxies with signal-to-noise ratio >3 in the $H_{\scriptscriptstyle \rm E}$ band; (ii) the stellar mass within a factor of two ($\sim\!0.3 \rm \ dex$) for 99.5 ${{\ \rm per\ cent}}$ of the considered galaxies; and (iii) the SFR within a factor of two ($\sim\!0.3 \rm \ dex$) for $\sim\!70{{\ \rm per\ cent}}$ of the sample. We discuss the implications of our work for application to surveys as well as how measurements of these galaxy parameters can be improved with deep learning. |
URI: | http://hdl.handle.net/20.500.12386/35998 |
URL: | https://api.elsevier.com/content/abstract/scopus_id/85156129726 https://academic.oup.com/mnras/article/520/3/3529/6979829 |
ISSN: | 0035-8711 |
DOI: | 10.1093/mnras/stac3810 |
Bibcode ADS: | 2023MNRAS.520.3529E |
Fulltext: | open |
Appears in Collections: | 1.01 Articoli in rivista
|