Please use this identifier to cite or link to this item:
http://hdl.handle.net/20.500.12386/36138
Title: | The Coma Cluster at LOFAR Frequencies. II. The Halo, Relic, and a New Accretion Relic | Authors: | BONAFEDE, Annalisa BRUNETTI, Gianfranco Rudnick, L. VAZZA, Franco Bourdin, H. GIOVANNINI, Gabriele Shimwell, T. W. Zhang, X. Mazzotta, P. Simionescu, A. Biava, N. Bonnassieux, E. BRIENZA, Marisa Brüggen, M. Rajpurohit, K. Riseley, C. J. Stuardi, C. Feretti, L. Tasse, C. BOTTEON, Andrea CARRETTI, Ettore CASSANO, Rossella Cuciti, V. DE GASPERIN, Francesco GASTALDELLO, Fabio ROSSETTI, Mariachiara Rottgering, H. J. A. VENTURI, Tiziana van Weeren, R. J. |
Issue Date: | 2022 | Journal: | THE ASTROPHYSICAL JOURNAL | Number: | 933 | Issue: | 2 | First Page: | 218 | Abstract: | We present LOw Frequency ARray observations of the Coma Cluster field at 144 MHz. The cluster hosts one of the most famous radio halos, a relic, and a low surface brightness bridge. We detect new features that allow us to make a step forward in the understanding of particle acceleration in clusters. The radio halo extends for more than 2 Mpc, which is the largest extent ever reported. To the northeast of the cluster, beyond the Coma virial radius, we discover an arc-like radio source that could trace particles accelerated by an accretion shock. To the west of the halo, coincident with a shock detected in the X-rays, we confirm the presence of a radio front, with different spectral properties with respect to the rest of the halo. We detect a radial steepening of the radio halo spectral index between 144 and 342 MHz, at ~30' from the cluster center, that may indicate a non-constant re-acceleration time throughout the volume. We also detect a mild steepening of the spectral index toward the cluster center. For the first time, a radial change in the slope of the radio-X-ray correlation is found, and we show that such a change could indicate an increasing fraction of cosmic-ray versus thermal energy density in the cluster outskirts. Finally, we investigate the origin of the emission between the relic and the source NGC 4789, and we argue that NGC 4789 could have crossed the shock originating the radio emission visible between its tail and the relic. | URI: | http://hdl.handle.net/20.500.12386/36138 | URL: | https://iopscience.iop.org/article/10.3847/1538-4357/ac721d https://api.elsevier.com/content/abstract/scopus_id/85135267693 |
ISSN: | 0004-637X | DOI: | 10.3847/1538-4357/ac721d | Bibcode ADS: | 2022ApJ...933..218B | Fulltext: | open |
Appears in Collections: | 1.01 Articoli in rivista |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2203.01958v1-2_compressed.pdf | 1.69 MB | Adobe PDF | View/Open | |
1_Bonafede_2022_ApJ_933_218 compr.pdf | PDF editoriale pt. 1 | 1.12 MB | Adobe PDF | View/Open |
13_Bonafede_2022_ApJ_933_218 compr.pdf | PDF editoriale pt. 2 | 9.66 MB | Adobe PDF | View/Open |
14_Bonafede_2022_ApJ_933_218 compr.pdf | PDF editoriale pt. 3 | 9.94 MB | Adobe PDF | View/Open |
Page view(s)
40
checked on Apr 28, 2025
Download(s)
12
checked on Apr 28, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are published in Open Access, unless otherwise indicated.